

FINAL REPORT for REMOVAL ACTIVITIES at the HOLMDEN AVENUE SITE Cleveland, Ohio

Prepared for:

U.S. EPA Ohio EPA NEDO

Prepared By:

ENTACT, Inc. February 6, 1998

Cleveland, Ohio

Peringage & 1898

tuble of Contents

SECTIONS		
1.0	INTRODUCTION	
2.0	MOBILIZATION/SITE PREPARATION	
3.0	FIELD REMOVAL ACTIVITIES	
4.0	STABILIZATION/TREATMENT	
5.0	SITE RESTORATION	
6.0	CONCLUSION	
FIGURES		
Figure 1-1	SITE TOPOGRAPHIC MAP	
Figure 2-1	SITE LAYOUT AND SAMPLING GRID	
Figure 3-1	EXCAVATION GRID VERIFICATION AND	
.	EXTENT OF CONTAMINATION RESULTS	
Figure 5-1	BACKFILL AND SITE RESTORATION	
TABLES		
Table 3-1	INACCESSIBLE AREAS - EXTENT OF CONTAMINATION	
Table 3-2	XRF RESULTS	
Table 3-3	EXCAVATION VERIFICATION	
Table 3-4	PERIMETER AIR SAMPLING	
Table 4-1	SOIL CHARACTERIZATION	
Table 4-2	TREATMENT VERIFICATION	
APPENDICES		
AFFLINDICES		
Appendix A	LABORATORY ANALYTICAL - EXCAVATION VERIFICATION AND	
• •	EXTENT OF CONTAMINATION RESULTS	
Appendix B	EXCAVATION GUIDANCE - XRF RESULTS/CALIBRATION INFORMATION	
Appendix C	AIR QUALITY SAMPLING DATA	
Appendix D	UNTREATED SOIL CHARACTERIZATION	
Appendix E	TREATED SOIL VERIFICATION	
Appendix F	BACKFILL LABORATORY VERIFICATION	
Appendix G	BACKFILL LABORATORY VERIFICATION	
Appendix H	CORRESPONDENCE	
Appendix I	SITE ACCESS AGREEMENT	
Appendix J	MATERIAL TICKETS	
Thheilaiv A	MAILMAL HONETO	

1.0 INTRODUCTION

The following ENTACT Final Report outlines activities completed as part of the Removal Action at the Holmden Avenue property in November and December of 1997. On November 7, 1997 ENTACT received notice to proceed with the removal action from the U.S. EPA Region 5 and the Master Metals Technical Committee. Field activities began at the Holmden Avenue property on November 10, 1997 and were completed on December 6, 1997.

1.1 Site Description

The Holmden Avenue property is located at 1157 Holmden Avenue in Cuyahoga County, Cleveland, Ohio. The property is bordered on the north by Holmden Avenue, the west by residential homes, and the south and east by a steep slope which leads down to property owned by LTV Steel. The property is "L"shaped with the long dimension aligned north-south. The approximate area affected by removal activities was 0.85 acres. At the time of removal activities there were no structures on site. Locations of both the Holmden Avenue site and the Master Metals facility have been noted on Figure 1-1.

1.2 Site History

There have been several soil investigations conducted at the site in previous years. Environment One. Inc. of Valley View, Ohio conducted a surface soil investigation in June of 1993. ENTACT conducted an additional surface and subsurface soil boring

investigation in May 1997, as well as, a brief XRF surface soil investigation over the entire property in October of 1997.

Historical site usage has been primarily residential. The most recent residential structure on site has been demolished for a few years. Prior to any residential use, however, the site was utilized as a dumping ground. Residents recounted disposal of concrete sidewalks and other structures by the City of Cleveland for a number of years. This is still evidenced by the existence of concrete, wood, and other construction materials at the surface and at depth of the fill area.

In addition to various other disposal activities, contaminated soil from the Master Metals, Inc. facility was allegedly transported to the site and utilized for fill of low areas. This apparently is the source of the lead contaminated soil on site. A previous removal action was conducted at the site on Holmden Avenue. However, as the most recent site investigations indicated, lead contamination was still present prior to initiation of this removal action.

1.3 Removal Action Objectives

The main objective of the Holmden Avenue removal action was to remove lead contaminated soil above the residential clean-up level of 400 mg/kg total lead. After removal the site was to be restored to its original condition and revegetated.

2.0 MOBILIZATION/SITE PREPARATION

2.1 Mobilization

Mobilization to the Holmden Avenue site began with the implementation of the Site Safety and Health Plan (SSHP). This plan is included in the Phase I Time-Critical Removal Action Workplan for the Master Metals Site in Cleveland, Ohio (ENTACT, May 13, 1997) as Appendix C. ENTACT crew members began physical mobilization to the site on November 10, 1997.

The office trailer established for the Master Metals. Inc. (MMI) Time-Critical Removal Action was utilized during the Holmden Avenue Removal Action. This was made possible by the close proximity of the Holmden Ave. property (site) to the MMI facility. ENTACT associates previously involved with the Time-Critical Removal Action at the MMI facility were deployed to the site.

The existing decontamination trailer utilized during the MMI removal was demobilized prior to work beginning at the Holmden Ave. site. Therefore, it was necessary to establish a temporary decontamination area at the MMI facility in addition to the small decon setup at the site. A boot wash and PPE disposal container were established at the site while decontamination at the MMI facility consisted of hand/eye wash with water containment, PPE storage and disposal, and sampling equipment decontamination.

During mobilization activities, ENTACT crew members discussed the removal action activities with surrounding residents. Information regarding contaminant hazards, exclusion areas, equipment traffic, air monitoring, and estimated completion time was recounted to the nearby residents.

2.2 Site Preparation

Prior to any equipment mobilization, utility companies were contacted to mark any subsurface lines or conduit that might be impacted by heavy equipment or excavation activities.

The following utilities were contacted:

East Ohio Gas
Cox Communication
Northeast Ohio Regional Sewer District
World Com
AT&T
The Illuminating Company
Cleveland Water Pollution Control
Ameritech

Grubbing of lead impacted areas, another activity performed during site preparation, precluded any removal or excavation activity. Heavy vegetative growth at the site necessitated the removal of brush and small trees to provide a clear area for work progression and equipment access.

Site preparation activities

2.3 Coordinate Grid System

Immediately following clearing activities, a coordinate grid system was established on site. This grid system was established with three objectives in mind. First, to allow for a systematic approach to contaminant removal. Secondly, to create a reproducible method for collecting and identifying verification samples; and, ultimately to determine extent of contamination in areas beyond those remediated by removal activities.

This system was aligned with the existing property lines bordering the site and Holmden Avenue. Grids were set out based upon 50' by 50' squares. However, due to the irregular nature of the property, replicating a consistent grid pattern was difficult. No grids were created larger than the initial size of 50' by 50'. Figure 2-1 has been included to depict the general site layout and the coordinate grid system discussed above.

2.4 Site Control Measures

The final step in site preparation consisted of establishing an exclusion zone which utilized the existing chain link fence and also necessitated the construction of a temporary high visibility fence between the property and Holmden Avenue. At this entrance to the property, signs were erected alerting residents of lead associated hazards and warning trespassers that entry onto the property would not be allowed.

Establishment of exclusion zone

3.0 FIELD REMOVAL ACTIVITIES

The following section outlines the tasks associated with the removal activities at the Holmden Avenue property. Correspondence with and site visits by Ohio EPA Northeast District and the U.S. EPA Region 5 aided in developing the removal objectives and strategy.

3.1 Inaccessible Areas

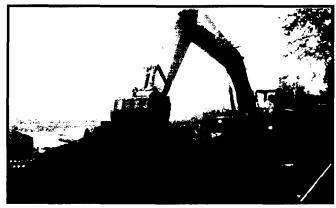
During a site visit on November 4, 1997 by Mr. Bart Ray and Ms. Sheila Abraham both of the Ohio EPA's Northeast District Office and Mr. Ababi Harris of the U.S. EPA Region 5, clarification was reached on what the extent of the remediation area was to be. In a follow up correspondence (ENTACT 11/5/97 - Appendix H) to Mr. Harris of the U.S. EPA, the extent of remediation was stated to be confined to areas that were accessible to humans or equipment and those areas not covered by concrete debris.

Although no removal was necessary in the aforementioned areas, sampling was conducted to determine the extent of contamination in areas where removal activities could not be carried through to fruition.

3.1.1 Analytical Extent of Contamination

Removal activities progressed by removing contaminated soil in areas that could be reached by excavating with a track hoe. Areas outside the reach of the excavator (areas greater than 35 feet from the heel of the slope), were sampled to determine the total lead concentrations present. Table 3-1 shows results from this sampling. Results obtained are consistent with the initial assumption that contamination was primarily confined to the upper portion of the slope and the level area comprising the majority of the property. Grids that were inaccessible to equipment or were covered with concrete debris, thereby eliminating the possibility of removal, are depicted with the appropriate total lead concentration on Figure 3-1 as Extent of Contamination areas. No removal was

conducted in these areas. However, as can be seen from Table 3-1, the results from laboratory analytical revealed no total lead concentrations above the clean-up level of 400 mg/kg.


3.2 Excavation

As mentioned previously the objective of the Holmden Avenue removal was to remove lead contaminated soils above the residential cleanup level of 400 mg/kg total lead. ENTACT crew members completed this objective by guiding excavation activities with a field portable x- ray fluorescence (XRF) analyzer. This results in more efficient contaminant removal by eliminating the removal of soils already below the clean up level of 400 mg/kg total lead. The XRF analyzer yields a total lead value within one minute, which diminishes the waiting necessarily associated with laboratory turn-around of soil samples.

XRF guided removal activities

Removal activities commenced with excavation of surficial soils located in the western parcel of the property. Excavation began in each area by initially removing contaminated soils from the top 1/3 of the slope, then excavating soil above 400 mg/kg on the flat portion of the property. Soils in the western portion were excavated first then work progressed east and then north towards Holmden Avenue.

Removal activities

As excavation progressed a front end loader was utilized to transport material from the excavation area directly to dump trucks for transportation to the Master Metals facility for storage. Single-axle and tri-axle dump trucks equipped with tarps were employed to transport the excavated soil to the storage area.

Loadout of excavated material

3.2.1 Excavation Verification

The XRF analyzer was utilized to screen soil in each of the individual grids. A minimum of three readings were collected via XRF analysis in each grid. When the soil in each grid was determined to be below 400 mg/kg total lead a sample was then collected for laboratory confirmation. This sample was collected by compositing areas within the grid and homogenizing the soil aliquot prior to actual placement into a laboratory provided glass sample container.

Each individual sample was then labeled and prepared for proper shipment to Ross Analytical Services in Strongsville, Ohio for analysis.

Laboratory analytical data for excavation verification and extent of contamination is included in Appendix A.

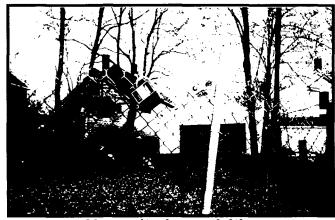
After receiving the initial laboratory analytical results, grid B4 vielded a total lead value of 446 mg/kg. Surficial soils from this grid were excavated an additional 6 inches and three samples were collected for total lead analysis. Sample results were well below the removal objective of 400 mg/kg (61.2 mg/kg, 56.9 mg/kg, and 16.3 mg/kg). Verification results for XRF screening, designated by the grid number, are reported in Table 3-2 and full XRF data, including daily calibration information, is included in Appendix B. Table 3-3 contains results of the laboratory analytical for excavation verification which have the sample designation VS-E-2. where E2 is the grid. Figure 3-1 depicts the sampling grid utilized for the removal action with the associated laboratory analytical results for each grid.

3.3 Engineering Controls

During removal activities at the Holmden Avenue property, control of dust emissions was of great concern. Fortunately, weather conditions during excavation and transportation were advantageous for dust suppression. However, if wind or soil conditions worsened, ENTACT crew members utilized misting equipment to greatly reduce the potential for off site migration of dust particles.

Stormwater management was also a priority on site. Prevention of contaminated stormwater runoff from the excavated soil was achieved by erecting silt fence during removal in key areas and covering the excavated soil with a 6 mil polyethylene cover during periods of inactivity.

3.4 Air Sampling Procedures


Air sampling for the removal activities was conducted utilizing low volume personal/area air samplers with 0.8 micron MCE cassettes. Sampling of perimeter ambient air consisted of positioning two samplers at the periphery of the exclusion zone. One located in an upwind position and another sited in a downwind locale for the purpose of determining potential off site dust migration.

Additional low volume air samplers were assigned to ENTACT crew members working directly within the exclusion zone. These samples were sent to ATC & Associates Laboratory in Indianapolis. Indiana daily for analysis.

Both perimeter air samples and personnel air quality samples have the designation AS-00 with the numerical suffix beginning with 01 and continuing in one unit increments until removal activities were complete (i.e. AS-01, AS-02, etc.). Air quality results

have been tabulated for reporting purposes in Table 3-4 and laboratory analytical is included in Appendix C. For reference personnel air quality data are included in the laboratory analytical included in the aforementioned appendix.

Air sampling results collected during the first day of excavation activities resulted in a downwind value of 2.8 µg/m³. After instituting corrective action for dust suppression with the on-site misting units, no additional exceedances of the ambient air quality level were encountered.

Air monitoring activities

4.0 STABILIZATION/TREATMENT

Excavated soil from the Holmden Avenue property. after transportation to the Master Metals facility, required specific handling and sampling demands to determine end use. The following section describes the specific steps taken to execute the stabilization process.

4.1 Temporary Soil Storage

The on-site tank containment unit used during the Time Critical Removal Action for the Master Metals facility was reconstructed for temporary storage of excavated soil from the Holmden Avenue property. Temporary storage was necessary while awaiting analytical results.

Temporary soil storage area

4.1.1 Excavated Soil Characterization

After initial removal and load out of excavated soil, stockpiled soil was then sampled for hazardous characteristics. The soil was segregated into 200 yd³ subpiles for sampling. One grab sample was collected from each subpile and analyzed for TCLP lead and total lead. A total of eight characterization samples were collected. These samples were submitted to Ross Analytical Services in Strongsville, Ohio for analysis. Tabulated sample results are included in Table 4-1 with the unique identifier US-00. Laboratory analytical from the characterization

sampling is included in Appendix D. The objective of this sampling was to determine the total lead concentration in the soil and to ascertain which subpiles, if any, would require treatment.

4.2 Additive mixture

After receipt of soil characterization analysis, it was determined that the majority of the excavated soil from the removal activities required treatment. Seven of the eight samples collected failed the TCLP analysis for lead. Treatability results from the soil excavated at the Master Metals facility (Treatability Study Report, Master Metals Site, ENTACT, Inc. September 2, 1997) were utilized to determine the correct additive mixture based on the similar origins of both media. Soils from the Master Metals facility yielded higher total lead concentrations and TCLP values than those excavated from the Holmden Avenue property, nevertheless, to institute a conservative treatment approach, additive ratios remained consistent to ensure complete treatment.

4.3 Treatment to Non-Hazardous Levels

Soil treatment was conducted directly in the tank containment unit to prevent contaminant migration to the surrounding concrete. Treatment additive was incorporated into the soil matrix immediately upon arrival on site. Thorough mixing was achieved by the use of an excavator to blend the additive into the soil matrix.

4.3.1 Treatment Verification

After the Holmden Avenue soil was treated, the stockpile was again sectioned into 200 yd³ subpiles for treatment verification. Verification was carried out by collecting one grab sample from each 200 yd³ subpile. Each sample was then submitted to Ross Analytical Services for TCLP lead analysis. Verification was completed if the analytical samples

were below 5 mg/L for TCLP lead. Due to the aggressive treatment strategy, all verification results from laboratory analysis yielded TCLP lead values below 5 mg/L indicating successful treatment to non-hazardous levels. Results are shown in Table 4-2 with the sample designation TS-00; and, the corresponding analytical data is located in Appendix E.

4.4 Material Storage Pending End Use Determination

Immediately following treatment and the subsequent collection of verification samples, the stockpiled soil was covered for temporary storage with 6 mil polyethylene and anchored to prevent cover loss. This storage technique will prevent contaminant migration due to wind and water erosion until the ultimate disposal has been determined.

Secured, stockpiled material on-site

5.0 SITE RESTORATION

After the completion of all field removal activities, project focus shifted towards restoring the residential property to its original state. Original site conditions, however, were poor with regard to site drainage and grading. Taking this into consideration, ENTACT crew members corrected these conditions during restoration activities. A cross-sectional view of the resulting end state of final site restoration activities is depicted in Figure 5-1.

5.1 Backfill

Prior to the completion of removal activities at the Holmden Avenue property, sources were identified that could provide the necessary quantity and quality of fill material for the residential site. Initially, two sources were located and inspected. One sample from each source was collected and analyzed for the following:

-Total Metals

- ➤ Arsenic
- ▶ Barium
- ➤ Cadmium
- **▶** Chromium
- ▶ Lead
- ➤ Silver
- Selenium
- ➤ Mercury
- -Pesticides
- -Soil pH

-Total Petroleum Hydrocarbons

Grab samples were collected directly from the clean backfill source locations and specifically from the area anticipated to be providing the fill material for the removal action. Backfill samples are identified with the sample designation BF-000.

Analytical results (contained in Appendix F) from the initial sources revealed that the fill material contained elevated levels of Total Petroleum Hydrocarbons (>120 mg/kg) and slightly elevated levels of several pesticides. Two additional backfill sources were then identified that could provide the necessary quantity of fill material. Both sources were sampled in the manner outlined above and analyzed for the aforementioned parameters. Analytical results for this second set of backfill samples yielded acceptable results. The data for these samples is compiled in Appendix G.

Two sources were ultimately utilized for fill material after the initial sources were determined to be unusable. One source, Silver Oak Land Development in Solon, Ohio, provided fill clay and Kurtz Brothers in Cleveland. Ohio supplied top soil for the vegetative cover layer. Examples of material tickets from each of the backfill sources are attached in Appendix I with the remainder of the material tickets being stored on file in ENTACT's file repository.

Immediately following excavation and receipt of analytical verification, the exposed soil was cut and

Subgrade prior to backfilling activities

graded to provide a suitable base for backfill placement. After this subgrade was established, clay fill was imported to raise the excavated area back to its original elevation. This clay layer was placed in a 10-12 inch lift over the flat portion of the excavated area. Completing the backfill activities consisted of

importing the top soil required for the vegetative cover. Top soil installation involved the addition of a 4-6 inch layer over the entire excavated area including the excavated slopes.

Restoration activities

5.2 Erosion Control

After restoring the original elevation and creating a good drainage pattern on site, the entire area was seeded to provide a vegetative cover. The area was seeded with a fescue, rye, and bluegrass seed mixture. Due to late seeding no fertilizer was added to the top soil. If an acceptable strand of grass has not been established by late spring, the area will be

Seeding activities

re-seeded along with the addition of fertilizer. In order to maintain the site conditions after restoration activities, proper stormwater management controls have been implemented to reduce the

Placement of matting fabric

destructive nature of runoff and runon. Silt fence was installed in areas susceptible to water erosion. In addition to the silt fence, a biodegradable erosion control matting was installed over all backfilled and seeded areas to reduce the loss of the top soil cover and to aid grass germination.

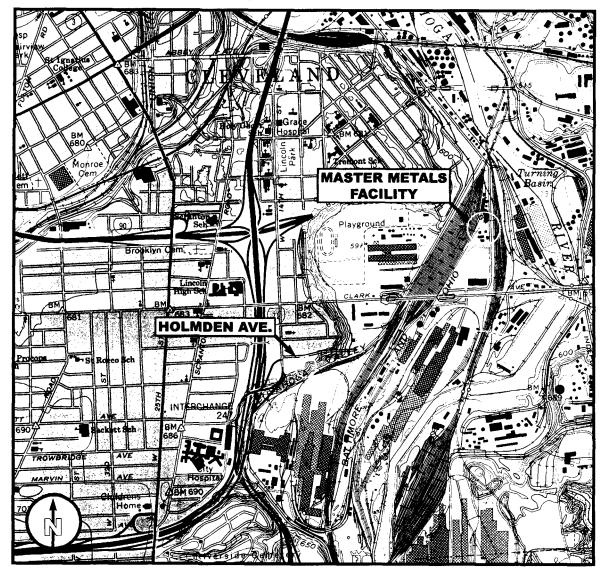
Installation of silt fence

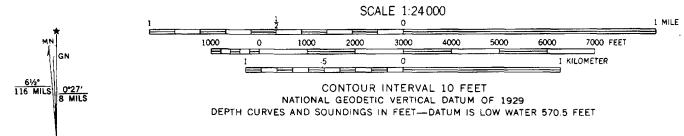
6.0 CONCLUSION

ENTACT crew members completed all objectives of the Holmden Avenue removal action in a quality-oriented and time effective manner while minimizing disturbance to the surrounding residential community. Contaminated soils above the clean-up level of 400 mg/kg were removed from the accessible areas on site. Material was safely transported to the Master Metals facility for treatment and storage. Excavated soils were successfully treated to below current regulatory levels and below the anticipated Phase IV Land Disposal Restriction level of 0.75 mg/L TCLP lead.

Performance of all removal activities occurred with the health and safety of the surrounding residents and ENTACT associates in full consideration. In addition, site restoration activities focused on returning the property to an improved state with regard to its original condition. Engineering controls for stormwater management were instituted at the site to maintain the current condition of the property while the vegetative cover is established.

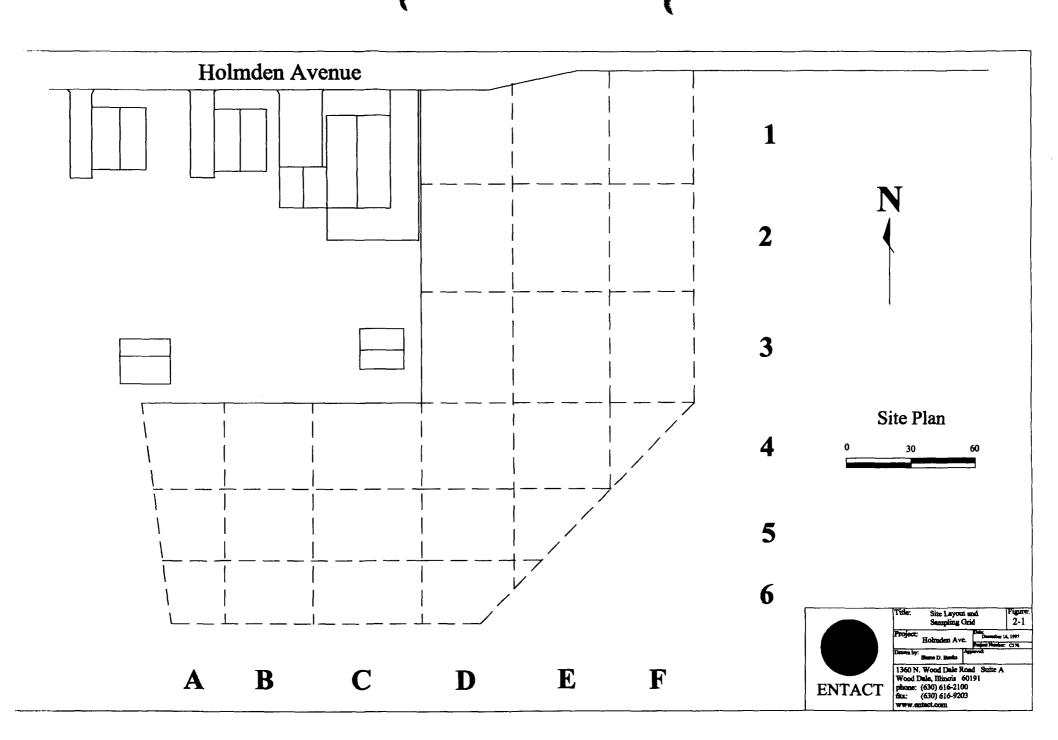
ENTACT's execution of this removal action has been completed in full compliance with the issued administrative order and all activities were conducted in a manner which has provided for a safe, efficient and effective remedial solution.

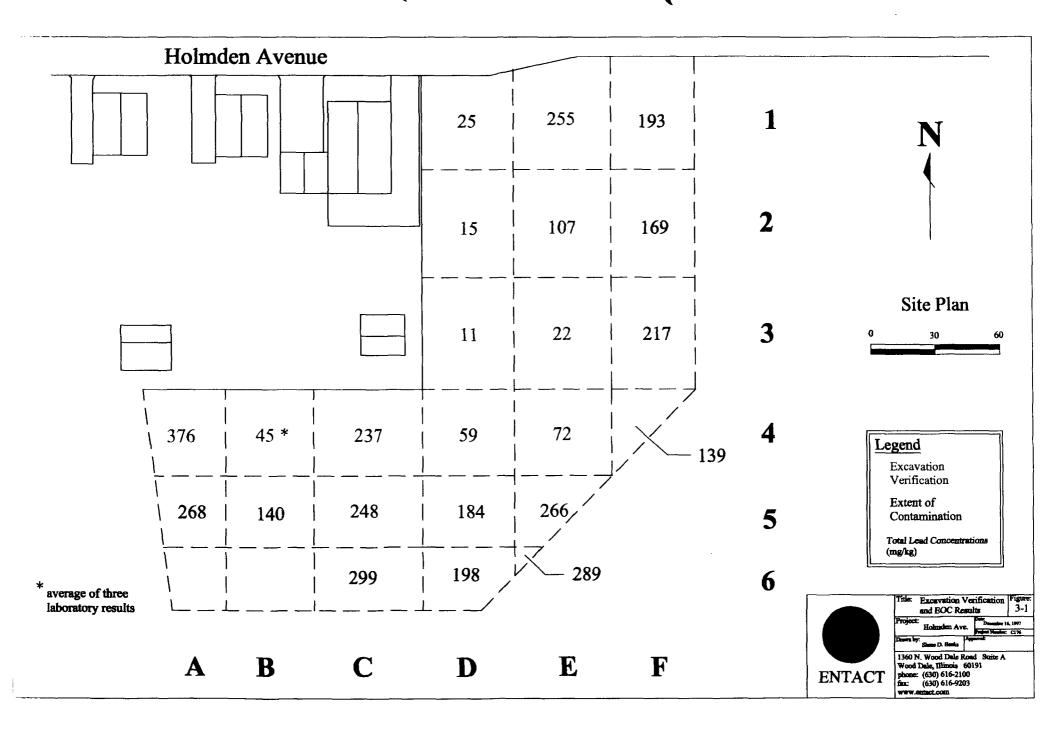

TOPOGRAPHIC SITE LOCATION

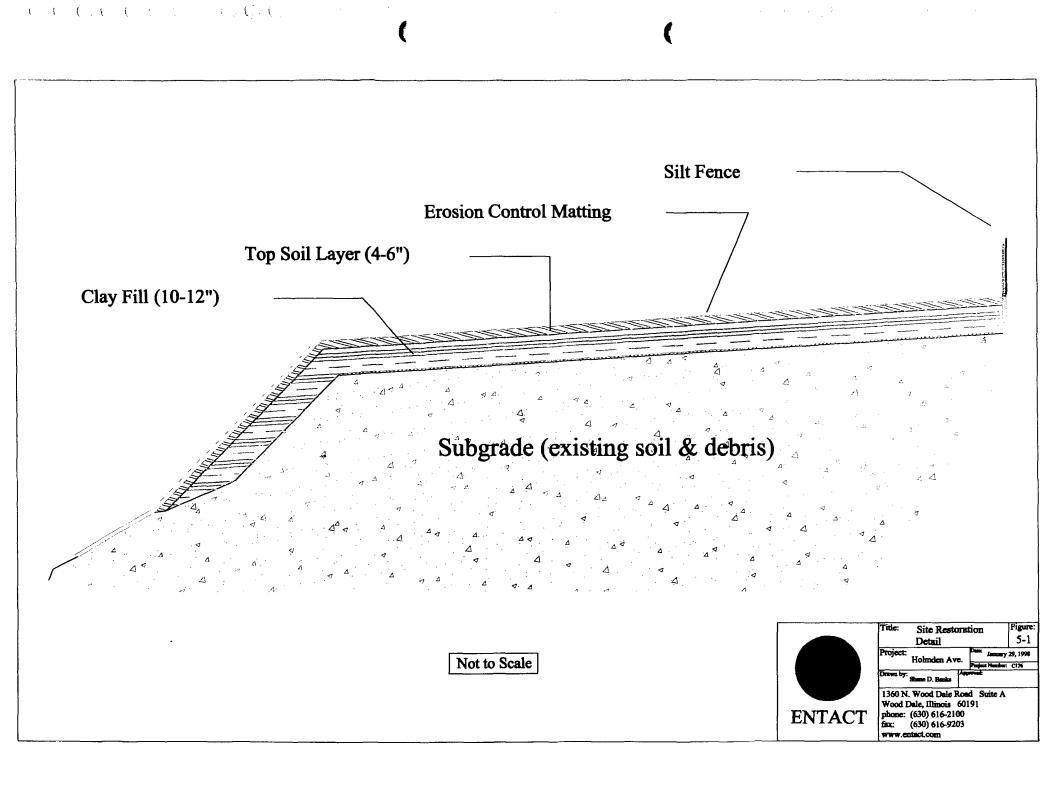

Master Metals Site - Holmden Ave. Cleveland, Ohio

CLEVELAND SOUTH QUADRANGLE C 7.5 MINUTE SERIES (TOPOGRAPHIC)

UTM GRID AND 1984 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

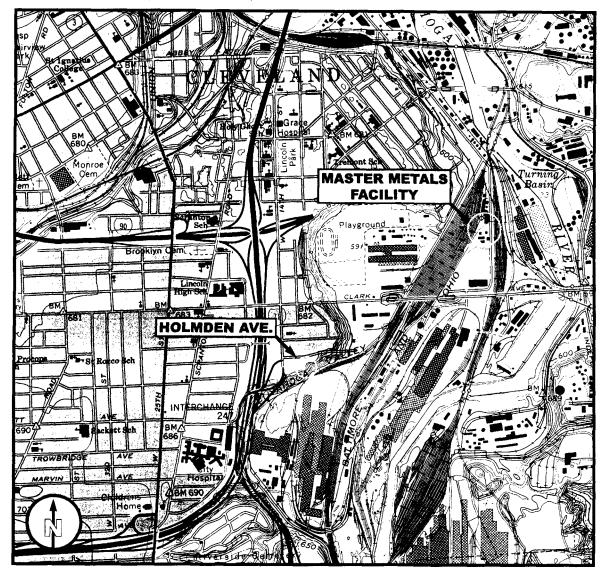

OHIO-CUYAHOGA CO.

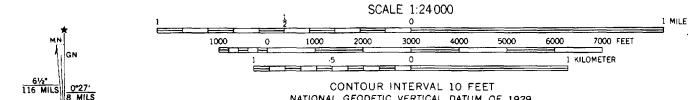




THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS
FOR SALE BY U. S. GEOLOGICAL SURVEY
DENVER, COLORADO 80225, OR RESTON, VIRGINIA 22092
A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLS IS AVAILABLE ON REQUEST

Figure 1-1

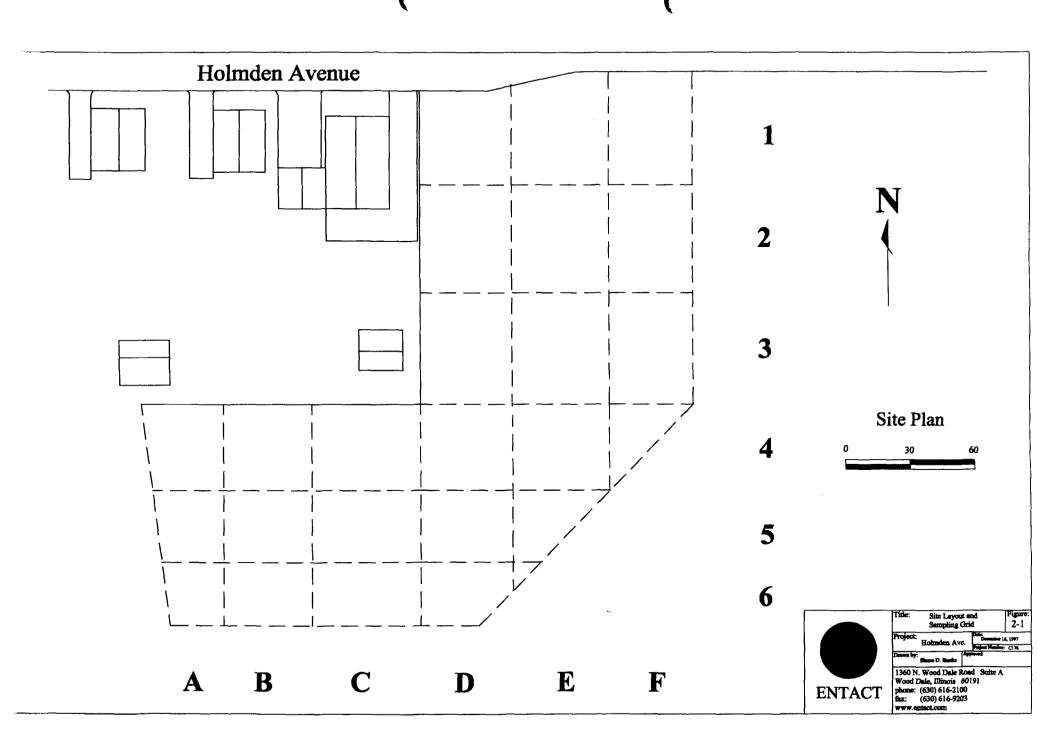


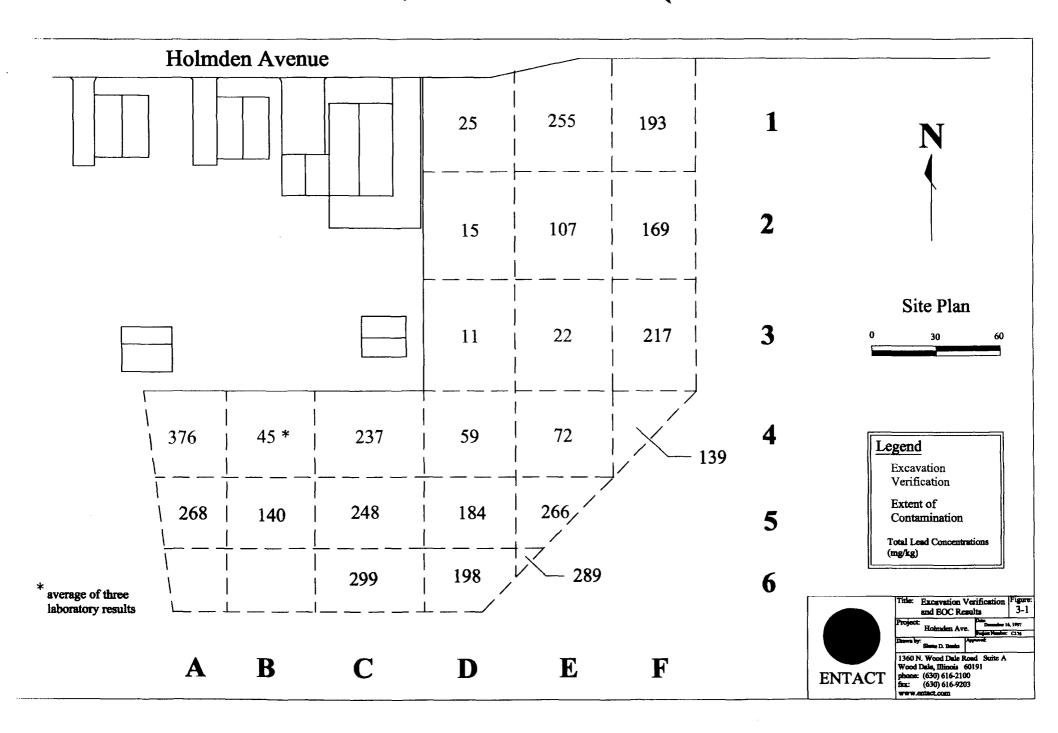


TOPOGRAPHIC SITE LOCATION

Master Metals Site - Holmden Ave. Cleveland, Ohio

CLEVELAND SOUTH QUADRANGLE OHIO-CUYAHOGA CO. 7.5 MINUTE SERIES (TOPOGRAPHIC)




NATIONAL GEODETIC VERTICAL DATUM OF 1929 DEPTH CURVES AND SOUNDINGS IN FEET-DATUM IS LOW WATER 570.5 FEET

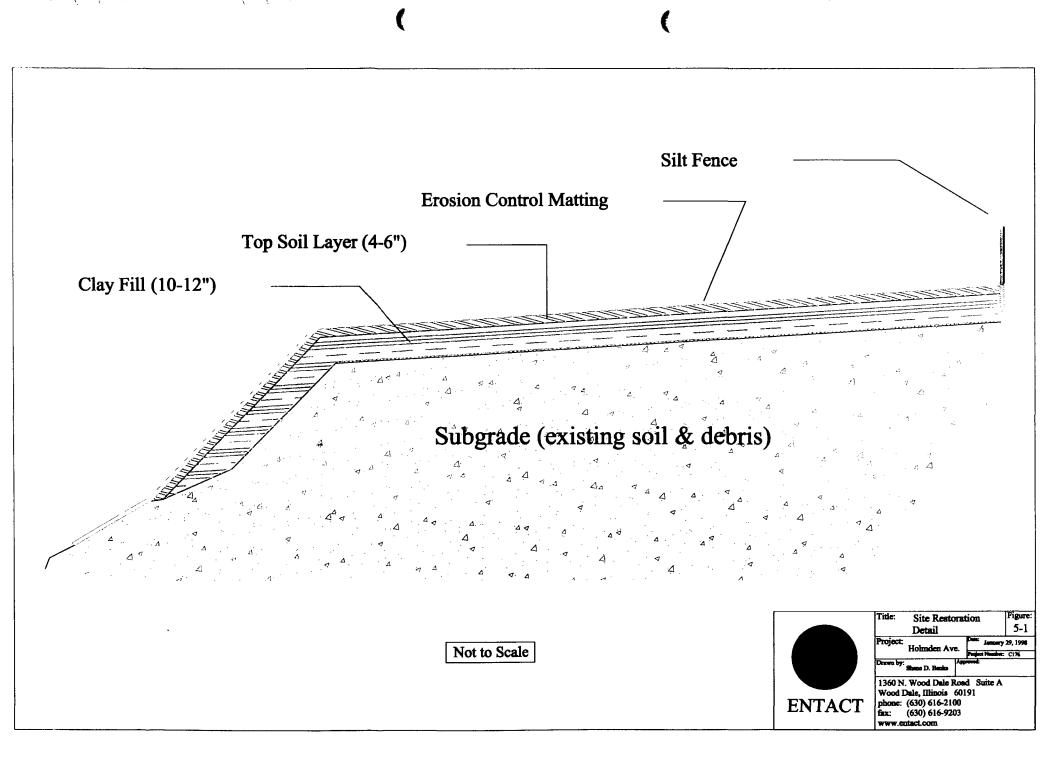

THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS FOR SALE BY U.S. GEOLOGICAL SURVEY DENVER, COLORADO 80225, OR RESTON, VIRGINIA 22092 A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLS IS AVAILABLE ON REQUEST

Figure 1-1

UTM GRID AND 1984 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

TABLE 3-1 Extent of Contamination

Date	Sample ID	Total Pb Result (mg/kg)
11/17/97	VS-F-2	169
11/17/97	VS-C-6	299
11/17/97	VS-B-5	140
11/17/97	VS-F-3	217
11/17/97	VS-A-5	268
11/17/97	VS-E-6	289
11/17/97	VS-F-1	193
11/17/97	VS-D-6	198
11/17/97	VS-F-4	139

Grid	Average XRF result (Total lead) (mg/kg)	Depth (inches)	Removal Comments
A4	82	36	excavated
A5	184	surface	extent of contamination
B4	319	24	excavated
B5	59	surface	extent of contamination
C4	82	12-18	excavated
C5	124	6	excavated
C6	164	surface	extent of contamination
DI	25	6-12	excavated
D2	31	6-12	excavated
D3	ND	6	excavated
D4	37	6-12	excavated
D5	153	6-12	excavated
D6	223	surface	extent of contamination
El	199	6-12	excavated
E2	51	6-12	excavated
E3	ND	6-12	excavated
E4	25	6-12	excavated
E5	183	6-12	excavated
E6	156	surface	extent of contamination
FI	69	surface	extent of contamination
F2	97	surface	extent of contamination
F3	228	surface	extent of contamination
F4	94	surface	extent of contamination

Date	Sample ID	Total Pb Result (mg/kg)
11/17/97	VS-E-2	107
11/17/97	VS-E-3	22.3
11/17/97	VS-C-5	248
11/17/97	VS-C-4	237
11/17/97	VS-B-4	446
11/17/97	VS-D-2	14.6
11/17/97	VS-A-4	376
11/17/97	VS-D-1	25.0
11/17/97	VS-D-3	11.0
11/18/97	VS-E-5	266
11/18/97	VS-D-5	184
11/18/97	VS-E-1	255
11/18/97	VS-E-4	72.3
11/18/97	VS-D-4	58.6
11/19/97	VS-B-4-a	61.2
11/19/97	VS-B-4-b	56.9
11/19/97	VS-B-4-c	16.3

Date	Sample ID	Total Pb (μg/m3)	Location
11/13/97	AS-01	2.8	downwind
11/13/97	AS-03	<2.0	upwind
11/14/97	AS-04	<2.0	upwind
11/14/97	AS-05	<2.0	downwind
11/17/97	AS-08	<2.0	upwind
11/17/97	AS-09	<2.0	downwind
11/19/97	AS-10	<2.0	upwind
11/19/97	AS-11	<2.0	downwind
11/20/97	AS-13	<2.0	upwind
11/20/97	AS-15	<2.0	downwind

TABLE 4-1 Soil Characterization

Date	Sample ID	Total Pb Result (mg/kg)	TCLP Pb Results (mg/L)
11/19/97	US-01	2,030	19.9
11/19/97	US-02	1,850	5.56
11/19/97	US-03	1,460	9.63
11/19/97	US-04	2,880	8.94
11/19/97	US-05	3,190	16.2
11/19/97	US-06	4,310	56.0
11/19/97	US-07	1,720	5.93
11/19/97	US-08	1,040	4.21

TABLE 4-2 Treatment Verification

Date	Sample ID	TCLP Pb Result (mg/L)
12/4/97	TS-01	<0.25
12/4/97	TS-02	<0.25
12/4/97	TS-03	0.720
12/4/97	TS-04	<0.25
12/4/97	TS-05	<0.25
12/4/97	TS-06	<0.25
12/4/97	TS-07	<0.25
12/4/97	TS-08	<0.25

Appendix A

Laboratory Analytical - Excavation Verification and Extent of Contamination Results

CERTIFICATE OF ANALYSIS

Client:

ENTACT

2850 W. 3rd Street Cleveland, OH 44113

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-11-103 Client Code: ENTACT

Report Date: 11/18/97

Work ID: Soils for Total Lead

Date Received: 11/17/97

SAMPLE IDENTIFICATION

Lab	Sample	Lab	Sample
Number	Description	<u>Number</u>	Description
01	VS-E-2	02	VS-D-2
03	VS-E-3	04	VS-B-5
05	VS-C-5	06	VS-A-4
07	VS-C-4	08	VS-D-1
09	VS-B-4	10	VS-D-3
11	VS-F-2	12	VS-F-3
13	VS-C-6	14	VS-A-5

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Certificate approved by

Carol L. Turner

Reported: 11/18/97

TEST METHODOLOGIES

Metals were determined in solid and non-aqueous liquid samples by digestion with nitric acid, hydrogen peroxide, and hydrochloric acid as in EPA Method 3050A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A, unless noted otherwise.

Lab No.	Sample Description	Result	<u>Units</u>	<u>EQL</u>
01A	VS-E-2	107	mg/Kg	4.8
02A	VS-D-2	14.6	mg/Kg	4.9
03A	VS-E-3	22.3	mg/Kg	5.0
04A	VS-B-5	140	mg/Kg	4.8
05A	VS-C-5	248	mg/Kg	4.9
06A	VS-A-4	376	mg/Kg	4.8
07A	VS-C-4	237	mg/Kg	4.8
A80	VS-D-1	25.0	mg/Kg	4.8
09A	VS-B-4	446	mg/Kg	4.9
10A	VS-D-3	11.0	mg/Kg	4.7
11A	VS-F-2	169	mg/Kg	5.0
12A	VS-F-3	217	mg/Kg	4.9
13A	VS-C-6	299	mg/Kg	5.0
14A	VS-A-5	268	mg/Kg	4.9

CHAIN OLUSTODY (

97-11-1930-10	2
---------------	---

Original - To Customer w/ Final Report

2nd Copy - To Job File

3rd Copy - To Lab

•	
ENT	TACT

Condition of Sample Upon Receipt:

Bottles Intact? (Yes) No

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Volatiles Free of Headspace? Yes / No

2 Parks	(176
Sampler: 630 V J	Job #:

ENTACT Contact: S. B3441	Date: 11/17/97
ENTACT Contact: 3 27/1/41	Date:

Turnaround Time Requested

24 Hour 48 Hour 3 Day Normal Other

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analysis
V5-7-2	Coll	1 váb	excavation verification samples	none	А
VS-7-2 VS-1-3, VS-C-6, VS-A-5	Soil	yr46			A
V9-0-6	Soil	g126			Α
VS/A-5	Goil	grab			Д
		,			

Samples Relinquished By:	Shands 1/17/27		ANALTSIS		
		Daye	A= 7-14/ Pb	F=	
Samples Received By:			B=	G=	
Samples Relinquished By:		Date	C=	H=	
Samples Received By:			D=		
Samples Relinquished By:		Date	E=	J=	2
,		Date		Distribution:	

COC Seals Present and Intact? Yes / No

CHAIN OF USTODY

0	17-11-	103	
			~

ENTACT	7

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Sampler: Ranks	Job#: <u>C176</u>
----------------	-------------------

ENTACT Contact: Shane	Banh!	Date: 11/17/97
•		

	Tur	naround Tir	me Requeste	ed .	
24 Hour 💢	48 Hour	3 Day	Normal	Other	

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analysis
16- E-2	Geil	grab	excavation vertication camples	ионе	A
VS-12-2	Goil	yrab			A
VS- E-3	Soil	y Vab			Δ
VS B-5	Ç⊕1	gvab	.41		A
VS-C-5	5011	gvab			A
V5- A-4	Soil	grab	•		A.
VS-C-4	Svil	grab			A
VS - D-1	GOIL	grab			A
V5-13-4	Soil	grab			А
16 D3	50, 1	grab	ี้ เ		Ą

Samples Relinquished By:	Char Bl	11/17/97		B.	ANALTSIS	
	7	Date	A= To!	71 Pb."	F=	
Samples Received By:		// 7 / / / Date	B=	4	G=	
Samples Relinquished By:	· · · · · · · · · · · · · · · · · · ·	Date	C=		H=	
Samples Received By:			D=		=	
Samples Relinquished By:		Date	E=	7.00	J=	
oumpioo itoimquionou by:		Date			Distribution:	

Condition of Sample Upon Receipt:

Bottles Intact? Yes / No Volatiles Free of Headspace? Yes / No COC Seals Present and Intact? Yes / No

Original - To Customer w/ Final Report

2nd Copy - To Job File 3rd Copy - To Lab

ROSS ANALYTICAL SERVICES, INC.

SAMPLE RECEIPT REPORT

WORKORDER # 97-/1-/03
RECEIVED BY: DATE/TIME: ////// /35 LOGIN DATE://////
SAMPLES ARRIVED BY(Circle One) Fed-Ex UPS Other(specify) HARIM
SHIPPING DOCUMENTATION PRESENT? YES/NO TRACKING NUMBER
SHIPPING CONTAINER INTACT? YES/NO (If no, explain below)
CUSTODY SEALS PRESENT? CUSTODY SEALS INTACT? Where? Cooler/Bottles Seal Nos.
SAMPLE TEMPERATURE
AQUEOUS SAMPLES FOR METALS, pH < 2? YES/NO/NA
AQUEOUS SAMPLES FOR WET TESTS, pH < 2? YES/NO/NA
AQUEOUS SAMPLES FOR CYANIDE, pH > 12? YES/NO/NA
AQUEOUS SAMPLES FOR VOA'S PRESERVED WITH HCI? YES/NO/NA(ETCE COC, DO 1004 MAC PH)
OTHER PRESERVATION REQUIREMENTS MET? YES/NO/NA SPECIFY:
SAMPLES INTACT? YES NO/NA (If no, explain below)
SHIPPING CONTAINER: (Circle) Ross Client Date Returned
COMMENTS:

CERTIFICATE OF ANALYSIS

Client:

ENTACT

2850 W. 3rd Street Cleveland, OH 44113

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-11-109

Client Code: ENTACT Report Date: 11/19/97

Work ID: Soils for Total Lead

Date Received: 11/18/97

SAMPLE IDENTIFICATION

Lab	Sample	Lab	Sample
Number	Description	Number	Description
01	VS-E-6	02	VS-E-5
03	VS-D-5	04	VS-F-1
05	VS-D-6	06	VS-E-1
07	VS-E-4	08	VS-D-4
09	VS-F-4		

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Certificate approved by

Carol L. Turner

Reported: 11/19/97

TEST METHODOLOGIES

Metals were determined in solid and non-aqueous liquid samples by digestion with nitric acid, hydrogen peroxide, and hydrochloric acid as in EPA Method 3050A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A, unless noted otherwise.

Lead by ICP

Method(s): 6010A

Lab No.	Sample Description	<u>Result</u>	<u>Units</u>	<u>EQL</u>
01A	VS-E-6	289	mg/Kg	5.0
02A	VS-E-5	266	mg/Kg	4.8
03A	VS-D-5	184	mg/Kg	4.8
04A	VS-F-1	193	mg/Kg	5.0
05A	VS-D-6	198	mg/Kg	5.0
06A	VS-E-1	255	mg/Kg	5.0
07A	VS-E-4	72.3	mg/Kg	4.9
08A	VS-D-4	58.6	mg/Kg	5.0
09A	VS-F-4	139	mg/Kg	4.8

(CHAIN OL JUSTODY (97-11-109)

ENTACT	7

Condition of Sample Upon Receipt:

Bottles Intact? Yes No

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Volatiles Free of Headspace? Yes / No

Sampler:	Banki	/11 utchins

Job#: C176

ENTACT	Contact:	NEME	BAN	45

Original - To Customer w/ Final Report

2nd Copy - To Job File

3rd Copy - To Lab

1	Trush	Tur	naround Tir	me Requeste	ed
	24 Hour	48 Hour	3 Day	Normal	Other[]

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analysis
VE ELL	601	y Vai b	excavation vertication	None	A
Va 12 6	601	grab		None	A
Vic 17 5	50,1	gr36		поне	4
Ve) - 4 × /	001	9416		None	A
VC, 72-6	90,1	grab		none	A
VO E.	Soil	4r36		none	A
VS-7-4	Sull	yrab		None	A
VE-D-4	50.1	grab		hohe	A
VS - F 4	Soul	4136		None	A

Samples Relinquished By: Jaca Jain	11-17-97		ANALYSIS	
	Date A	= Total Pb	F=	
Samples Received By: A 92m.	// 7/ - 1/ 7 Date B	=	G=	
Samples Relinquished By:	C (//Dates	=	H=	
Samples Received By:			<u> =</u>	
Samples Relinquished By:	E	=	J=	
	Date		Distribution:	

COC Seals Present and Intact? Yes No

ROSS ANALYTICAL SERVICES, INC.

SAMPLE RECEIPT REPORT

WORKORDER # $\frac{9/-1/-28/109}{1}$
RECEIVED BY: DATE/TIME: ////7/0) A LOGIN DATE: ////9/
SAMPLES ARRIVED BY(Circle One) Fed-Ex UPS Other(specify)
SHIPPING DOCUMENTATION PRESENT? YES/NO TRACKING NUMBER
SHIPPING CONTAINER INTACT? YES/NO (If no, explain below)
CUSTODY SEALS PRESENT? CUSTODY SEALS INTACT? Where? Cooler/Bottles Seal Nos
SAMPLE TEMPERATURE 600
AQUEOUS SAMPLES FOR METALS, pH < 2? YES/NO/NA
AQUEOUS SAMPLES FOR WET TESTS, pH < 2? YES/NO/NA
 AQUEOUS SAMPLES FOR CYANIDE, pH > 12? YES/NO/NA
AQUEOUS SAMPLES FOR VOA'S PRESERVED WITH HCI? YES/NO/NA(From COC, Do not take pH)
OTHER PRESERVATION REQUIREMENTS MET? YES/NO/NA SPECIFY:
SAMPLES INTACT? YES/NO/NA (If no, explain below)
SHIPPING CONTAINER: (Circle) Ross Client Date Returned
COMMENTS:

CERTIFICATE OF ANALYSIS

Client:

ENTACT

2850 W. 3rd Street Cleveland, OH 44113

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-11-127

Client Code: ENTACT Report Date: 11/20/97

Work ID: Soils for Total Lead

Date Received: 11/19/97

SAMPLE IDENTIFICATION

Lab	Sample	Lab	Sample
Number	Description	Number	Description
01	VS-B-4-a	02	VS-B-4-b
03	VS-B-4-c		

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Certificate approved by

Carol L Turner

TEST METHODOLOGIES

Metals were determined in solid and non-aqueous liquid samples by digestion with nitric acid, hydrogen peroxide, and hydrochloric acid as in EPA Method 3050A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A, unless noted otherwise.

Work Order # 97-11-127 Ross Analytical Services, Inc Reported: 11/20/97

Lead by ICP

Method(s): 6010A

Lab No	o. Sample Description	Result	Units	EOL
01A	VS-B-4 - a	81.2	mg/Kg	4.9
02A	VS-B-4-b	56.9	mg/Kg	4.9
03A	VS-B-4-C	16.3	mg/Kg	4.9

CHAIN OF USTODY

97-11	-/246
.€.	CH6

6	
יו אינו מוא הוו	
	FACT

1360 N. Mood Dale Rd. Suite A

Sampler:	Bauli	mil At	Job #:_	C 1/6
ENTACT C	ontact: 5 32 uls		Date:	11/12/37

Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203				rnaround Time Requested 3 Day Normal Other
Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative Analysis
· WO TEA a	\$2.1	9146	excavation verification	hone A
VS 7.4.6	Cil	98417		Non A
V5-8-4-C	11.2	4146		112VC A
	I			

Samples Relinquished By:	SheBe	11/19/37		ANALYSIS	
· · · · · · · · · · · · · · · · · · ·	:11	11/1997 5:32 M	= total Pb	F=	
Samples Received By:	May 7 Ms	11/19975:30pg	<u> </u>	G=	
Samples Relinquished By:		C=		H=	
Samples Received By:		// <i>b/f/</i> / D=	=	<u> </u>	
Samples Relinquished By:		/ Date E=	=	J=	
		Date		Distribution:	

Condition of Sample Upon Receipt:

Bottles Intact Yeş // No Volatiles Free of Headspace? Yes / No COC Seals Present and Intact? Yes / No

Original - To Customer w/ Final Report

2nd Copy - To Job File 3rd Copy - To Lab

Appendix B

Excavation Guidance - XRF Results and Calibration Information

Sheet1

Summary of XRF Results from Holmden Ave Removal

	XRF	RESULT (I	LEAD)	
		(ppm)		
GRID	1	2	3	
A4	92	72	ND	82
A5	118	305	130	184
B4	259	575	164	319
	303	369	246	
B5	57	62	ND	59
C4	186	144	119	82
C5	86	204	83	124
C6	177	142	173	164
D1.	36	ND	ND	25
D2	32	24	38	31
D3	ND	ND	ND	ND
D4	28	64	ND	37
D5	194	108	157	153
D6	301	178	190	223
E1	252	147	199	199
E2	69	80	ND	51
E3	ND	ND	ND	ND
E4	20	35	ND	25
E5	213	174	163	183
E6	148	170	149	156
Fl	110	ND	82	69
F2	69	125	ND	97
F3	170	225	121	228
		419	209	
F4	59	113	109	94

XRF Calibration Sheet

Calibration/Standardiza	uon					
~		Date:	11/13/97		Site:	Holmden Ave
		Tech:	S. Banks		XRF Unit:	Q-53
Fe Sample						
1 e Sample	Result		Goa	l		Achieved
Fe:	0.989444		0.98 < Fe	< 1.20		yes or no
Tef lon Sample						
Element	1	Result		Std Dev		R/SD < 5
Zn		31		25.6		1.210938
Se		11		9.67		1.137539
Sr		3.2		2.38		1.344538
Hg		49		21		2.333333
Pb Sn		9.3 24		8.92 16		1.042601 1.5
Ва	•	4.4	•	3.24		1.358025
Site Specific Calibration	Standards					
ORO OPCOMO CAMPIANO	T Oran adiao					Percent
Standard	Actual	1	2	3	Average	Difference
1	140	174	135	79	129	-7.62%
2	580	628	597	722	649	11.90%
3	3030	2890	3230	2940	3020	-0.33%
4	6200	5930	6380	6060	6123	-1.24%
	····					

XRF Calibration Sheet

Calibration/Standardizat	on					
		Date: Tech:	11/14/97 M.Hutchin	S	Site: XRF Unit:	Holmden Ave Q-53
Eo Samplo		+				
Fe Sample	Result		Goa	<u> </u>		Achieved
Fe:	1.01594		0.98 < Fe	< 1.20		yes or no
T-fl O						
Teflon Sample Element		Result		Std Dev		R/SD < 5
Мо		7.8		2.16		3.611111
Ag		30		18.6		1.612903
Sr		11.3	•	2.71		4.169742
Sn		34		16.1		2.111801
Pb		23.1		9.45		2.44444
Ba		. 4.4		3.24		1.358025
Site Specific Calibration	Standards	1	······································			Percent
Standard	Actual	1	2	3	Average	Difference
1	140	174	135	79	129	-7.62%
2	580	628	597	722	649	11.90%
3	3030	2890	3230	2940	3020	-0.33%
4	6200	5930	6380	6060	6123	-1.24%
· · · · · · · · · · · · · · · · · · ·						

XRF Calibration Sheet

	tandardizati		Date:	11/17/97	• • • • • • • • • • • • • • • • • • • •	Site:	Holmden Ave
			Tech:	S. Banks		XRF Unit:	Q-53
Fe Sample				# 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	•		
		Result		Goal			Achieved
	Fe:	1.00215		0.98 < Fe <	< 1.20		yes or no
Teflon Samı							
	Element		Result		Std Dev		R/SD < 5
	Zn		35		25.4		1.377953
	Se		12.2		9.56		1.276151
	Sr		2.6		2.31		1.125541
	Hg Pb		27 11.9		20.2 8.89		1.336634 1.338583
	Sn		39		16.2		2.407407
	Ва		5.1		3.26		1.564417
Site Specific	Calibration	Standards					Percent
	Standard	Actual	1	2	3	Average	Difference
	1	140	154	135	130	140	-0.24%
	2	580	703	674	616	664	14.54%
	3	3030	2450	2690	2510	2550	-15.84%
	4	6200	6580	6570	6410	6520	5.16%
					• • • • • • • • • • • • • • • • • • • •		

		Date: Tech:	11/19/97 S. Banks		Site: XRF Unit:	Holmden Ave Q-53
Fe Sample						
	Result		Goa	1	.	Achieved
Fe:	0.985168	}	0.98 < Fe	< 1.20		yes or no
Teflon Sample						
Element	,	Result		Std Dev		R/SD < 5
Zn	,	44		26.9	·	1.635688
CrLO	14-11 10-11	89		44.9		1.982183
Fe		95		70		1.357143
Co		111		65.1		1.705069
Th		15.9		4.71		3.375796
Zr		3.4		2.17		1.56682
Sr		8.1		2.66		3.045113
Hg		48		21.7	***	2.211982
Sb	*	16		10.8		1.481481
Ba		8.9		3.31		2.688822
Site Specific Calibration	n Standards	S .				
						Percent
Standard	Actual	1	2	3	Average	Difference
1	140	154	135	130	140	-0.24%
2	580	703	674	616	664	14.54%
3	3030	2450	2690	2510	2550	-15.84%
4	6200	6580	6570	6410	6520	5.16%
Comments						

Appendix C

Air Quality Sampling Data

ANALYTICAL SERVICES

Entact

1360 N. Wood Dale Road, Suite A

Wood Dale IL 60191

Attn : Shane Banks

Cust Proj #: 89005.9701

Lab Proj #: 97126178 Date : 12/11/1997

Date Received : 12/10/1997 Date Completed: 12/11/1997

REPORT OF ANALYSIS

ATC Client Client ATC Sample Sample Sample Sample Number Description Number Description AS-01 AS-03 97-027930 97-027931 AS-02 97-027932

This report shall not be reproduced except in full, without approval of the Laboratory.

Certified By Barbara E. Rudziecka tention : Shane Banks

Lead

Entact

1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

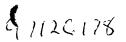
Date of Report 12/11/97 Project Number 97126178

2.0

12/11/97

kpa

Re: 89005.9701


Sample ID 97 0027930 Sample Desc AS-01 Date Sampled 11/13/1997 Date Received 12/10/1997 Inorganic METALS Unit Method PQL Run Date Anl Lead NSH 7300 ug/m3 2.0 12/11/97 kpa Sample ID 97 0027931 Sample Desc AS-02 Date Sampled 11/13/1997 Date Received 12/10/1997 Inorganic **METALS** Result Unit Method PQL Run Date Anl NSH 7300 2.0 12/11/97 Lead ug/m3 kpa Sample ID 97 0027932 cample Desc AS-03 Date Sampled 11/13/1997 Date Received 12/10/1997 Inorganic METALS Result Unit Method PQL Run Date Anl

<2.0

ug/m3

NSH 7300

CHAIN OF JUSTODY 4 112C 178

Original - To Customer w/ Final Report

2nd Copy - To Job File

3rd Copy - To Lab

Bottles Intact? Yes / No

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Volatiles Free of Headspace? Yes / No

Sampler: Hutchin (Jol	b#: 076	
------------------------	---------	--

ENTACT Contact: G. Bunks

Turnaround Time Requested 24 Hour 48 Hour 3 Day Normal Other

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analysis
AG-01	air		ambient air sampling 970027930		A
AS-02	air	_	31	-	A
AS-01 AS-02 AS-03	air		√ 32	_	4

Samples Relinquished By: Shee I	20 lula	ANALYSIS	
	' Date' A= 1	Tota / P6 F=	
Samples Received By: Fred By	12109) (2:30) Date B=	G=	
Samples Relinquished By:		H=	
Samples Received By:	D=	=	.,
Samples Relinquished By:	Date E=	J=	
Condition of Sample Upon Receipt:	Date	Distribution:	nal Popor

COC Seals Present and Intact? Yes / No

AIR MONL JRING LOG

ENTACT	7

V. 1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Sampler:_	Hutchins	Job#: <u>C176</u>

Sample No.	Instrument I.D.	Time	Flow Rate	Volume	Type of Sample	Analysis
		(win)	(cm²/min)	(m ³)		
AS - 01	C-0/	304	2053	0.628	37mm ME CASKH	Total P6
48-02	5/67	320	2169	0.694	37mm MCE CASSELLE	72/2/76
AS-07	5170	320	2268	0.725	39mm MCE (9) refle	Dontal PG

NOTES AND CALCULATIONS

Distribution:

Original - To Customer w/ Final Report 2nd Copy - To Job File

3rd Copy - To Lab

ANALYTICAL SERVICES

Entact

1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Attn : Shane Banks

Lab Proj #: 97126177 Date : 12/11/1997

Cust Proj #: 89005.9701 C-0176

Date Received : 12/10/1997 Date Completed: 12/11/1997

REPORT OF ANALYSIS

ATC	Client	ATC	Client
Sample	Sample	Sample	Sample
Number	Description	Number	Description
97-027926	AS-04	97-027927	AS-05
97-027928	AS-06	97-027929	AS-07

This report shall not be reproduced except in full, without approval of the Laboratory.

Barbara E. Rudziecka

tention : Shane Banks

Entact

1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Date of Report 12/11/97 Project Number 97126177 Re: 89005.9701 C-0176

Sample ID 97 0027926 Sample Desc AS-04 Inorganic	Date Sampled	11/14/199	7	Date Received	12/10/1997		
METALS Lead		Result <2.0	Unit ug/m3		PQL 2.0	Run Date 12/11/97	Anl kpa
Sample ID 97 0027927 Sample Desc AS-05 Inorganic	Date Sampled	11/14/199	7	Date Received	12/10/1997		
METALS Lead		Result <2.0	Unit ug/m3		PQL 2.0	Run Date 12/11/97	Anl kpa
Sample ID 97 0027928 mple Desc AS-06 Inorganic	Date Sampled	11/14/1997	7	Date Received	12/10/1997		
METALS Lead		Result <2.0	Unit ug/m3		PQL 2.0	Run Date 12/11/97	Anl kpa
Sample ID 97 0027929 Sample Desc AS-07 Inorganic	Date Sampled	11/14/1997	7	Date Received	12/10/1997		
METALS Lead		Result <2.0	Unit ug/m3	Method NSH 7300	PQL 2.0	Run Date 12/11/97	Anl kpa

CHAIN OF USTODY

97126177

Original - To Customer w/ Final Report

2nd Copy - To Job File

3rd Copy - To Lab

Condition of Sample Upon Receipt:

Bottles Intact? Yes / No

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Volatiles Free of Headspace? Yes / No

Sampler: Hutc	hins	Job #:_	0176
ENTACT Company	S Reuli	D-4-	12/a/m

ENTACT Contact: S.Bquhs Date: 12/9 0

Turnaround Time Requested

24 Hour | 48 Hour | 3 Day | Normal Other

Sample No.	Matrix	Composite or Grab	Description/Remarks		Preservative	Analysis
AS-04 AS-05 AS-06 AS-07	air	_	ambient air sampling	970027926	None	A
AS-05	air	_	, , , , , , , , , , , , , , , , , , ,	27		4
AS-06	air			18	_	A
45-07	air			1 29	_	4
		-				

Samples Relinquished By: Chere D. R. r.b. by	ANALYSIS		
Date	A= Tetal P6	F=	
Samples Received By: 12-1099 12-1099 Date	B=	G=	
Samples Relinquished By:	C=	H=	
Samples Received By:	D=	<u> =</u>	
Samples Relinquished By:	E=	J=	_
Date		Distribution:	

COC Seals Present and Intact? Yes / No

AIR MONL JRING LOG

1360 N Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Sampler: Hutchins	Job #:
-------------------	--------

ENTACT Contact: 9 Banks Date: 11/14/97

Sample No.	Instrument I.D.	Time	Flow Rate	Volume	Type of Sample	Analysis
10 01	F11-1	(min)			22	
AS-04	5167	554	222/	1.23	37mm MCE CASE HE	Total Pl
AS-05	6-01	246	2066	0.506	37mm MCE casselfe	70-121 PG
A5-06	5/10	554	2331	1.29	37mm MCE casseffe	Potal P6
AS-07	5168	543	1874	1.01	Jum MCE cesselfe	70-121 PG

NOTES AND CALCULATIONS

ᆫ		
		- 1
1		
١		- 1
ı		1
1		- 1
- 1		- 1
L		
1		
		- 1
ŀ		
		į
-		
-		
L		
-		
	i i	

Distribution:

Original - To Customer w/ Final Report

2nd Copy - To Job File 3rd Copy - To Lab

ANALYTICAL SERVICES

Entact 1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Attn : Shane Banks

Lab Proj #: 97126179 Date : 12/11/1997

Cust Proj #: 89005.9701

Date Received : 12/10/1997 Date Completed: 12/11/1997

REPORT OF ANALYSIS

ATC Client Sample Sample Number

97-027933

Description

AS-08

ATC Sample Client Sample

Number

Description

97-027934

AS-09

This report shall not be reproduced except in full, without approval of the Laboratory.

Cevtified By Barbara E. Rudziecka

*ttention : Shane Banks

Entact

1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Date of Report 12/11/97 Project Number 97126179

Re: 89005.9701

Sample ID 97 0027933 Sample Desc AS-08

Date Sampled 11/17/1997

Date Received 12/10/1997

Inorganic

METALS

Lead

Result <2.0

Unit Method ug/m3 NSH 7300

PQL 2.0

Run Date Anl 12/11/97 kpa

Sample ID 97 0027934 Sample Desc AS-09

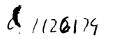
Inorganic

Date Sampled 11/17/1997

Date Received 12/10/1997

METALS Lead

Result <2.0


Unit ug/m3

Method NSH 7300

PQL 2.0

Run Date Anl 12/11/97 kpa

CHAIN OF USTODY

Bottles Intact? Yes / No

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Volatiles Free of Headspace? Yes / No

Sampler:_	Hutchins	Job #: <i>C/16</i>	
	_		

ENTACT Contact: SR44US Date: 12/9/97

Turnaround Time Requested

2nd Copy - To Job File

3rd Copy - To Lab

24 Hour 48 Hour 20 Day Normal Other 21

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analysis
AS-08	air	_	ambient air monitoring 97002793000		A
AS-08 AS-09	air		, , , , , , , , , , , , , , , , , , ,	_	4
· · · · · · · · · · · · · · · · · · ·					

Samples Relinquished By: Samples Received By: Samples Relinquished By: Samples Relinquished By: C= ANALY A= Total P6 B= Total P6 G= C= H=	'SIS
Samples Relinquished By:	:
Date	:
Samples Received By: I=	
Samples Relinquished By: Date L= J=	
Date Dist	ribution: nal - To Customer w/ Final Report

COC Seals Present and Intact? Yes / No

AIR MON. RING LOG

ENTACT

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Sampler: Hutchins	Job #: C116	_
-------------------	-------------	---

ENTACT Contact: 5. Banks Date: 11/18/97

Sample No.	Instrument I.D.	Time	Flow Rate	Volume	Type of Sample	Analysis
		(min)	(om3/min)	(ME)		
AS-00	5167	383	2197	0.841	37mm MCE cassede	10/2176
AS-08	5/10	386	2359	0.910	37 mm NCE (2)5040	Total P6
nas		·				

NOTES AND CALCULATIONS

Distribution:

Original - To Customer w/ Final Report

2nd Copy - To Job File 3rd Copy - To Lab

Entact

1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Attn : Shane Banks

Lab Proj #: 97126180 : 12/11/1997 Date

Cust Proj #: 89005.9701

Date Received : 12/10/1997 Date Completed: 12/11/1997

REPORT OF ANALYSIS

ATC	Client	ATC	Client
Sample	Sample	Sample	Sample
Number	Description	Number	Description
J , U U U U	AS-10 AS-12	97-027936	AS-11

This report shall not be reproduced except in full, without approval of

Certified By Barbara E. Rudziecka

Attention : Shane Banks

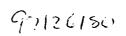
Entact

1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Date of Report 12/11/97 Project Number 97126180

Re: 89005.9701

Date Received 12/10/1997 Date Sampled 11/19/1997 Sample ID 97 0027935 Sample Desc AS-10 Inorganic Method PQL METALS Result Unit Run Date Anl NSH 7300 Lead <2.0 ug/m3 2.0 12/11/97 kpa Sample ID 97 0027936 Date Sampled 11/19/1997 Date Received 12/10/1997 Sample Desc AS-11 Inorganic METALS Result Unit Method PQL Run Date Anl 12/11/97 kpa <2.0 ug/m3 NSH 7300 2.0 Lead Date Sampled 11/19/1997 Date Received 12/10/1997 Sample ID 97 0027937


^ample Desc AS-12 Inorganic

METALS Lead

Result Unit Method <1.0 ug/filte NSH 7300

PQL 1.0

Run Date Anl 12/11/97 kpa

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Sampler: Hythins	Job#:
ENTACT Contact: S.Bauls	Date: 12/9/11

Turnaround Time Requested 3 Day Normal Other 24 Hour 48 Hour

Sample No.	Matrix	Composite or Grab	Description/Remarks Pres	servative Analysis
AS-10	air	_	ambient air zampling fixue 1935	- A
AS-11	air	-	V 1 3/1	- 4
AS-10 AS-11 AS-12	air	_	3)	- A

Samples Relinguished F	By: Shae D. B.C. By	19/02	ANALYSIS
		Date A= Total P6	F=
Samples Received By:	LilBy 12.65 12:	[₹] ⁄ _A Date B=	G=
Samples Relinquished E	Зу:	Date C=	H=
Samples Received By:_		D=	l=
Samples Relinquished E		Date E=	J=
		Date	Distribution:
Condition of Sample Upon R	eceipt:		Original - To Customer w/ Final Repor
Bottles Intact? Yes / No	Volatiles Free of Headspace? Yes / No	COC Seals Present and Intact? Ye	1 0 10 ± 11 E

(AIR MON. DRING LOG

1360 N Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Sampler: Hutchins	Job #: <u>C176</u>
-------------------	--------------------

Sample No.	Instrument I.D.	Instrument I.D. Time		Volume	Type of Sample	Analysis
-		(min)	(cm3/min)	(M3)		
AS-10	5170	352	2341	0.824	37mm WE casselle	Total 76
AG-11	5167	352	2217	0.180	37mm NE Casactle	72/21 PG
45-12	_	_	_	_	37mm ME resselfe	70-12 1 P

NOTES AND CALCULATIONS

Distribution:

Original - To Customer w/ Final Report

2nd Copy - To Job File 3rd Copy - To Lab

ANALYTICAL SERVICES

Entact 1360 N. Wood Dale Road, Suite A Wood Dale IL 60191

Attn : Shane Banks

Lab Proj #: 97126181 Date : 12/11/1997

Cust Proj #: 89005.9701

Date Received : 12/10/1997 Date Completed: 12/11/1997

REPORT OF ANALYSIS

ATC	Client	ATC	Client
Sample	Sample	Sample	Sample
Number	Description	Number	Description
	AS-13 AS-15	97-027939	AS-14

This report shall not be reproduced except in full, without approval of the Laboratory.

Certified By Barbara E. Rudziecka 'tention : Shane Banks

Entact

1360 N. Wood Dale Road, Suite A

Wood Dale IL 60191

Date of Report 12/11/97 Project Number 97126181

Re: 89005.9701

Sample ID 97 0027938 Sample Desc AS-13

Inorganic

Date Sampled 11/20/1997

Date Received 12/10/1997

Result Unit ug/m3

Unit

ug/m3

Method NSH 7300

PQL 2.0

PQL

2.0

Run Date Anl 12/11/97 kpa

Sample ID 97 0027939

Sample Desc AS-14

Inorganic

Date Sampled 11/20/1997

Date Received 12/10/1997

<2.0

Result

Method

NSH 7300

METALS Lead

METALS

Lead

Sample ID 97 0027940

Date Sampled 11/20/1997

Date Received 12/10/1997

mple Desc AS-15 Inorganic

METALS

Result

Unit

Method

PQL

Run Date Anl 12/11/97 kpa

Lead

Run Date Anl 12/11/97 kpa NSH 7300 <2.0 ug/m3 2.0

6	7	1	5	٥	1	51

1360 N. Wood Dale Rd. Suite A

Sampler: + Lutchins	Job #: <u>C/76</u>
ENTACT Contact: S.Bauli	Date: 12/9/97

ENTACT	Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203			Turnaround Time Requested 24 Hour 48 Hour 3 Day Normal Other				
Sample No.	Matrix	Composite or Grab	Descr	iption/Remarks		Preservative	Analysis	
AS-13	zir		ambieut zir	sumplind	ና <i>?</i> ረሀ2753§		A	
45-14	air			, , <u>, , , , , , , , , , , , , , , , , </u>	39	_	A	
45-15	air	_			40	-	A	

			•	
Samples Relinquished I	By: Chae D. RC 12/	9b7	Al	NALYSIS
_		Date A- Teta/	Pb	F=
Samples Received By(Fre By 121057 12:34	Date B=		G=
Samples Relinquished I	Ву:	Date C=		H=
Samples Received By:_		D=		
Samples Relinquished I	Ву:	Date E=		J=
		Date		Distribution:
Condition of Sample Upon R	Receipt:			Original - To Customer w/ Final Report
Bottles Intact? Yes / No	Volatiles Free of Headspace? Yes / No	COC Seals Present and Intact?	Yes / No	2nd Copy - To Job File 3rd Copy - To Lab

AIR MONI. JRING LOG

ENTACT

1360 N Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Sampler:	Llutchins	Job #:_	C 176	

ENTACT	Wood Dale, Illinois 60 Ph 630/616-2100 Fa		E1	NTACT Contact:	S.Banke Da	te: 11/20/87
Sample No.	Instrument I.D.	Time (wih)	Flow Rate (cm³/mih)	Volume (Mr)	Type of Sample	Analysis
AG- 13	5168	4%	1579	0.63	37mm MCE casselle	Total Pb
AS-14	5170	410	2402	0.960	37mm MCE CESEHE	70/21 P6
AS-15	5167	400	2200	0.830	37mm ME COSSER	total P6

NOTES AND CALCULATIONS

			, , , , , , , , , , , , , , , , , , ,
1	i e e e e e e e e e e e e e e e e e e e		l .
1			l .
1			l .
			1
L I			
1			
•	1		
· f			į
•			
t			l e e e e e e e e e e e e e e e e e e e
4			
			•
1			
1			
1			
I .			
1			
1			
•			
•			
1			
1			
1			
1			
1			
i .			
1			
1			
t .			
1			
1		1	
1			
I.			
1			
í			
ī			
1			
	T		
1	l .		l .
1	I .		i
1	l .		l .
I .	1		i
1	l .		1
1	i e e e e e e e e e e e e e e e e e e e		1
1			1
1	l .		i
1			l .
1	l .		i e e e e e e e e e e e e e e e e e e e
1	l .	1	i e e e e e e e e e e e e e e e e e e e
	l ,		1
	i e e e e e e e e e e e e e e e e e e e		1
L	1		1
	-		
i .			
1	•		
1			
I .			
l .			
i .			
i			
•			
\$			
1		1	
1			
7			
1			
1			
ı			
1			
1			
1			
1			
ł			

Distribution:

Original - To Customer w/ Final Report

2nd Copy - To Job File 3rd Copy - To Lab

Appendix D

Untreated Soil Characterization

CERTIFICATE OF ANALYSIS

Client:

ENTACT

2850 W. 3rd Street Cleveland, OH 44113

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-11-126

Client Code: ENTACT
Report Date: 11/20/97

Work ID: Soils for TCLP & Total Lead

Date Received: 11/19/97

SAMPLE IDENTIFICATION

Lab	Sample	Lab	Sample
Number	Description	<u>Number</u>	Description
01	US-01	02	US-02
03	US-03	04	US-04
05	US-05	06	US-06
07	US-07	08	US-08

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Certificate approved by

Carol L. Turner

TEST METHODOLOGIES

The bottle leaching step of TCLP (for metals and semivolatile organics) was performed by EPA Method 1311. Matrix spikes, if any, were added at the time of digestion or extraction for further analyses.

Metals were determined in aqueous samples and leachates by digestion with nitric and hydrochloric acids as in EPA Method 3010A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A unless noted otherwise.

Metals were determined in solid and non-aqueous liquid samples by digestion with nitric acid, hydrogen peroxide, and hydrochloric acid as in EPA Method 3050A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A, unless noted otherwise.

Sample Description:	US-01		Lab No.:	01
Analyte Description		Result	<u>Units</u>	EQL
TCLP fluid leaching		11/20/97	Date begun	
Lead by ICP		2,030	mg/Kg	4.8
TCLP Lead by ICP		19.9	mg/L	0.25
Sample Description:	US-02		Lab No.:	02
Analyte Description		Pogul t	Traite	201
TCLP fluid leaching		<u>Result</u> 11/20/97	<u>Units</u> Date begun	EQL
Lead by ICP		1,850	mg/Kg	5.0
TCLP Lead by ICP		5.56	mg/L	0.25
Sample Description:	US-03		Lab No.:	03
Analyte Description TCLP fluid leaching		<u>Result</u> 11/20/97	<u>Units</u>	EOL
Lead by ICP		1,460	Date begun mg/Kg	4.9
TCLP Lead by ICP		9.63	mg/L	0.25
			_	
Sample Description.	IIC - 0.4	•	Ish No.	0.4
Sample Description:	US-04		Lab No.:	04
Sample Description:	US-04		<u>Lab No.:</u>	04
Analyte Description	US-04	<u>Result</u>	<u>Units</u>	04 <u>EQL</u>
Analyte Description TCLP fluid leaching	US-04	11/20/97	<u>Units</u> Date begun	EQL
Analyte Description TCLP fluid leaching Lead by ICP	US-04	11/20/97 2,880	Units Date begun mg/Kg	EQL 4.8
Analyte Description TCLP fluid leaching	US-04	11/20/97	<u>Units</u> Date begun	EQL
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP		11/20/97 2,880	Units Date begun mg/Kg mg/L	EQL 4.8 0.25
Analyte Description TCLP fluid leaching Lead by ICP		11/20/97 2,880	Units Date begun mg/Kg	EQL 4.8 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP		11/20/97 2,880	Units Date begun mg/Kg mg/L	EQL 4.8 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP		11/20/97 2,880	Units Date begun mg/Kg mg/L	EQL 4.8 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching		11/20/97 2,880 8.94 <u>Result</u> 11/20/97	Date begun mg/Kg mg/L Lab No.: Units Date begun	EQL 4.8 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching Lead by ICP		11/20/97 2,880 8.94 Result 11/20/97 3,190	Date begun mg/Kg mg/L Lab No.: Units Date begun mg/Kg	EQL 4.8 0.25 05
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching		11/20/97 2,880 8.94 <u>Result</u> 11/20/97	Date begun mg/Kg mg/L Lab No.: Units Date begun	EQL 4.8 0.25 05
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching Lead by ICP		11/20/97 2,880 8.94 Result 11/20/97 3,190	Date begun mg/Kg mg/L Lab No.: Units Date begun mg/Kg	EQL 4.8 0.25 05
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching Lead by ICP	US-05	11/20/97 2,880 8.94 Result 11/20/97 3,190	Date begun mg/Kg mg/L Lab No.: Units Date begun mg/Kg	EQL 4.8 0.25 05 EQL 4.9 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP	US-05	11/20/97 2,880 8.94 Result 11/20/97 3,190	Date begun mg/Kg mg/L Lab No.: Units Date begun mg/Kg mg/L mg/Kg mg/L	EQL 4.8 0.25 05 EQL 4.9 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description:	US-05	11/20/97 2,880 8.94 Result 11/20/97 3,190 16.2	Date begun mg/Kg mg/L Lab No.: Units Date begun mg/Kg mg/L Lab No.:	EQL 4.8 0.25 05 EQL 4.9 0.25
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP	US-05	11/20/97 2,880 8.94 Result 11/20/97 3,190	Date begun mg/Kg mg/L Lab No.: Units Date begun mg/Kg mg/L mg/Kg mg/L	EQL 4.8 0.25 05 EQL 4.9 0.25

Analyte Description TCLP Lead by ICP		Result 56.0	<u>Units</u> mg/L	
Sample Description:	US-07		Lab No.:	07
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP		Result 11/20/97 1,720 5.93	mg/Kg	EQL 4.9 0.25
Sample Description:	US-08		Lab No.:	08
Analyte Description TCLP fluid leaching Lead by ICP TCLP Lead by ICP		Result 11/20/97 1,040 4.21	Date begun mg/Kg mg/L	EQL 5.0 0.25

QC SUMMARY

Laboratory Control Samples

Target	LCSS5657 % Recovery	LCSW5658 % Recovery
Lead	100	97

- * LCSS5657 was analyzed with the batch for lead on a total basis
- * LCSW5658 was analyzed with the batch for lead on a TCLP basis

Laboratory Method Blank, PBS5450

	Result	\mathtt{EQL}
Target	(mg/Kg)	(mg/Kg)
Lead	<eql< td=""><td>5.0</td></eql<>	5.0

Laboratory Method Blank, PBW5451

m	Result	EQL
Target	(mg/L)	(mg/L)
Lead	<eol< th=""><th>0.25</th></eol<>	0.25

- * PBS5450 was analyzed with the batch for lead on a total basis
- * PBS5451 was analyzed with the batch for lead on a TCLP basis

Matrix Spike/Matrix Spike Duplicate Pair Performed on the TCLP leachate of Soil US-01 (Lab No. 01)

	MS	MSD	
Target	% Recovery	% Recovery	RPD
=======================================	=======================================		=========
Lead	100	98	2

CHAIN OF USTODY

9	7	-//	-/26	
		•		~

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Sampler:_	Bunle	September 2	Job #:_	
ENTACT (Contact: <u></u> ← ₹	aulu	Date: _	11/19/27

+	fiford to	1 11/21 Tur	naround Tir	me Requeste	d	
24	Hour	48 Hour 🔯	3 Day	Normal	Other	

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analysis
11' (1	C. I	Male	universed excavated soil	None	AB
19, 02	<u>C. il</u>	grab		1,017	AB
116. 17	c . l	grah		your	A3
116 64	seil	grali		nohe	AB
111 11	(,1)	11 Val.		hone	A 72.
(P)	(.1	11146		HOLP	AB
110 (1	Carl	4410		hone	43,
116 15	(-1	grate		11000	AZ
		·			
				·	` <u> </u>

Samples Relinquished By:	Suge RO_	"/19/97		ANALYSIS	-,
1 × 1, 1		Date	A= -to+1/ P6	F=	
Samples Received By:	1 Capacification	Date Date	B= TCLP P6	G=	
Samples Relinquished By:		Date	C=	H=	
Samples Received By:			D=	=	
Samples Relinquished By:		/ pakey	E=	J=	
		Date		Distribution:	

Condition of Sample Upon Receipt:

Bottles Intact? Yes TNo

Volatiles Free of Headspace? Yes / No

COC Seals Present and Intact? YES / No

Original - To Customer w/ Final Report

2nd Copy - To Job File

ROSS ANALYTICAL SERVICES, INC.

SAMPLE RECEIPT REPORT

RECEIVED BY: DATE/TIME: ///9/9/	1735 LOGIN DATE: ///2019
SAMPLES ARRIVED BY(Circle One) Fed-Ex UPS	Other(specify)
SHIPPING DOCUMENTATION PRESENT? YES/NO TRACKING NUMBER	
SHIPPING CONTAINER INTACT? YES/NO	(If no, explain below)
CUSTODY SEALS PRESENT? CUSTODY SEALS INTACT? Where? Cooler Bottles Seal Nos.	
SAMPLE TEMPERATURE	
AQUEOUS SAMPLES FOR METALS, pH < 2?	YES/NO/NA
AQUEOUS SAMPLES FOR WET TESTS, pH < 2?	YES/NO/NA
AQUEOUS SAMPLES FOR CYANIDE, pH > 12?	YES/NO/NA
AQUEOUS SAMPLES FOR VOA'S PRESERVED WITH HC	il? YES/NO (NA) room COC, Do soc take pH)
OTHER PRESERVATION REQUIREMENTS MET?	YES/NO/NA SPECIFY:
SAMPLES INTACT?	YES/NO/NA(If no, explain below)
SHIPPING CONTAINER: (Circle) Ross Client Date Retu	rned N/A
COMMENTS:	(110 d

Appendix E

Treated Soil Verification

CERTIFICATE OF ANALYSIS

Client:

ENTACT

1630 Wood Dale Road Wood Dale, IL 60191

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-12-021 Client Code: ENTACT

Report Date: 12/11/97

Work ID: Soils for TCLP Lead

Date Received: 12/04/97

SAMPLE IDENTIFICATION

Lab	Sample	Lab	Sample
Number	Description	Number	Description
01	TS-01	02	TS-02
03	TS-03	04	TS-04
05	TS-05	06	TS-06
07	TS-07	08	TS-08

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Certificate approved by

Carol L. Turner

Reported: 12/10/97

TEST METHODOLOGIES

The bottle leaching step of TCLP (for metals and semivolatile organics) was performed by EPA Method 1311. Matrix spikes, if any, were added at the time of digestion or extraction for further analyses.

Metals were determined in aqueous samples and leachates by digestion with nitric and hydrochloric acids as in EPA Method 3010A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A unless noted otherwise.

Sample Description:	TS-01		Lab No.:	. 01
Analyte Description TCLP fluid leaching TCLP Lead by ICP		Result 12/08/97 <eql< td=""><td>Unit Date begu</td><td>n ——</td></eql<>	Unit Date begu	n ——
Sample Description:	TS-02		Lab No.:	02
Analyte Description TCLP fluid leaching TCLP Lead by ICP		Result 12/08/97 <eql< td=""><td>Unit Date begu</td><td>n ——</td></eql<>	Unit Date begu	n ——
Sample Description:	TS-03		Lab No.:	03
Analyte Description TCLP fluid leaching TCLP Lead by ICP		Result 12/08/97 0.72	Unit Date begu	n
Sample Description:	TS-04		Lab No.:	. 04
Analyte Description TCLP fluid leaching TCLP Lead by ICP	TS-04	<u>Result</u> 12/08/97 <eql< td=""><td>Lab No.: Unit Date begu</td><td>s <u>ROL</u></td></eql<>	Lab No.: Unit Date begu	s <u>ROL</u>
Analyte Description TCLP fluid leaching	TS-04	12/08/97	<u>Unit</u> Date begu	EQL in L 0.25
Analyte Description TCLP fluid leaching TCLP Lead by ICP		12/08/97	Unit Date begu mg/	ES EOL
Analyte Description TCLP fluid leaching TCLP Lead by ICP Sample Description: Analyte Description TCLP fluid leaching		12/08/97 <eql Result 12/08/97</eql 	Date begunng/ Lab No.: Unit	ES EOL 0.25 ES EOL 0.25

Sample Description:	TS-07		<u>Lab No.:</u>	07
Analyte Description TCLP fluid leaching		<u>Result</u> 12/08/97	<u>Unit</u> Date begu	
TCLP Lead by ICP		<eql< td=""><td>mg/</td><td>L 0.25</td></eql<>	mg/	L 0.25
Sample Description:	TS-08		Lab No.:	08
Analyte Description TCLP fluid leaching		<u>Result</u> 12/08/97	<u>Unit</u> Date begu	
TCLP Lead by ICP		<eql< td=""><td>mg/</td><td></td></eql<>	mg/	

QC SUMMARY

Laboratory Control Sample, LCSW5706

Target

% Recovery

Lead

98

Laboratory Method Blank, PBW5498

	Result	EQL
Target	(mg/L)	(mg/L)
Lead	<eql< th=""><th>0.25</th></eql<>	0.25

TCLP BOTTLE Blank, BBLK0199

	Result	EQL
Target	(mg/L)	(mg/L)
Lead	<eol< th=""><th>0.25</th></eol<>	0.25

Matrix Spike/Matrix Spike Duplicate Pair Performed on the TCLP leachate of Soil TS01 (Lab No. 01)

	MS	MSD	
Target	% Recovery	% Recovery	RPD
Lead	92	94	2

Ross Analytical Services, Inc. 16433 Foltz Industrial Parkway • Strongsville, Ohio 44136

(216) 572-3200 • Fax (216) 572-7620 • 1-800-325-7737

ANALYSIS REQUEST AND Page ____ of ____ CHAIN OF CUSTODY RECORD J. Sonderman Report to: FINTACIA ACSOCIATES Same audverc Lab Contact Short F2n41 Purchase Order No. Dale Rd. Sule Project Reference 116 - 216C fzx] ONE CONTAINER PER LINE 616-9203 6301 Sample Sample Date Container Pre-**Required Tests** Condition on Number Type/Description Collected Type servative Receipt (Lab) 11/4 TO 01 TCLP P6 75.02 C3 1 75.3 TULP 75.1 5011 TCLD 661 715-16 (11 14/21 75 17 900 12/4 TUP つく いる Possible Hazard Identification: 14.42 12-4154 Other Sample Disposal: Return to Client Non-hazard Flammable Skin Irritant Disposal by Lab Archive (mos) Turnaround Time Required: QA Requirements: Normal Report Required By 1. Relinquished by Date 1. Received by Signature/Affiliation Signature/Affiliation 2. Relinguished by 2. Received by Signature/Affiliation Signature/Affiliation Special Instructional Comments:

ROSS ANALYTICAL SERVICES, INC.

SAMPLE RECEIPT REPORT

WORKORDER #	1-12-00	4		/	,
RECEIVED BY:	0	ATE/TIME	12/4/9	7 //30 LOGINI	DATE: /2/4/4/
SAMPLES ARRIV	/ED BY(Circle One)	Fed-Ex	UPS	Other (specify)	lent
1	UMENTATION PRES	ENT?	YES(NO)	
SHIPPING CON	TAINER INTACT?	(YES/NO	(If no, explain belo	ow)
		· · · · · · · · · · · · · · · · · · ·	YE\$/NO YE\$/NO		·- -
SAMPLE TEMPE	ERATURE				
AQUEOUS SAM	IPLES FOR METALS,	, pH < 2?		YES/NO(NA)	
AQUEOUS SAM	IPLES FOR WET TES	STS, pH <	2?	YES/NO(NA)	
AQUEOUS SAM	IPLES FOR CYANIDE	Ξ, pH > 12	2?	YES/NO/NA	
AQUEOUS SAM	IPLES FOR VOA'S P	RESERVE	D WITH HC	1? YES/NO(NA)	'. Do not take pH)
OTHER PRESE	RVATION REQUIREM	MENTS ME	न?	YES/NO NA SPE	CIFY:
SAMPLES INTA	CT?			YES/NO/NA (If no,	explain below)
SHIPPING CON	ITAINER: (Circle) F	Ross	Client Date Retu	rned	
COMMENTS:					

Appendix F

Backfill Laboratory Analytical

Ross Analytical Services, Inc.

16433 Foltz Industrial Parkway • Strongsville, Ohio 44136 (216) 572-3200 • Fax (216) 572-7620 • 1-800-325-7737

CERTIFICATE OF ANALYSIS

Client:

ENTACT

2850 W. 3rd Street Cleveland, OH 44113

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-11-108

Client Code: ENTACT Report Date: 11/20/97

Work ID: Sand: Waste Characterization

Date Received: 11/18/97

SAMPLE IDENTIFICATION

Lab Sample
Number Description

01 BF-003

Lab Sample
Number Description

02 BF-004

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Certificate approved by

Carol L. Turner

Work Order # 97-11-108

TEST METHODOLOGIES

pH in solids and non-aqueous liquids was determined electrometrically following slurrying with water as in EPA Method 9045C.

Organochlorine pesticides and PCB's were determined using gas chromatography with electron capture detection as in EPA Method 8081.

Metals were determined in solid and non-aqueous liquid samples by digestion with nitric acid, hydrogen peroxide, and hydrochloric acid as in EPA Method 3050A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A, unless noted otherwise.

Mercury was determined in solid and non-aqueous liquid samples by cold vapor atomic absorption after acid/permanganate digestion as in EPA Methods 245.5 and 7471A. A single analysis was performed unless otherwise noted.

Total petroleum hydrocarbons were determined by infrared spectroscopy following extraction with Freon-113 as in EPA Method 418.1. Solids were Soxhlet extracted as in EPA Method 9071.

Solid and semisolid samples extracted for organochlorine pesticides and PCB's in an ultrasonic extractor using methylene chloride and acetone as in EPA Method 3550A.

Sample	Description:	BF-003

Lab	No.:	01
-----	------	----

Analyte Description	Result	Units	EQL
pH by EPA 9045C	7.77	Standard units	
Arsenic by ICP	10.0	mg/Kg	10
Barium by ICP	20.1	mg/Kg	0.38
Cadmium by ICP	<eql< td=""><td>mg/Kg</td><td>0.48</td></eql<>	mg/Kg	0.48
Chromium by ICP	4.40	mg/Kg	1.0
Lead by ICP	11.9	m g /Kg	4.8
Selenium by ICP	<eql< td=""><td>mg/Kg</td><td>10</td></eql<>	mg/Kg	10
Silver by ICP	<eql< td=""><td>mg/Kg</td><td>1.0</td></eql<>	mg/Kg	1.0
Mercury by CVAA	<eql< td=""><td>mg/Kg</td><td>0.08</td></eql<>	mg/Kg	0.08

Sample Description: BF-004

Lab	No.:	02

Analyte Description	Result	Units	EQL
pH by EPA 9045C	7.21	Standard units	
Arsenic by ICP	<eql< td=""><td>mg∕Kg</td><td>10</td></eql<>	mg∕K g	10
Barium by ICP	5 6 .6	mg ∕Kg	0.39
Cadmium by ICP	<eql< td=""><td>mg/Kg</td><td>0.49</td></eql<>	mg/Kg	0.49
Chromium by ICP	11.4	mg ∕Kg	1.0
Lead by ICP	25.0	m g /Kg	4.9
Selenium by ICP	<eql< td=""><td>mg∕Kg</td><td>10</td></eql<>	mg∕K g	10
Silver by ICP	<eql< td=""><td>mg/Kg</td><td>1.0</td></eql<>	m g/K g	1.0
Mercury by CVAA	<eql< td=""><td>mg/Kg</td><td>0.08</td></eql<>	mg/Kg	0.08

Date Printed: 11/20/97 10:54

ANALYTICAL RESULTS

Client Sample ID....: SBF003 Data Type..... SAMPLE

Lab Sample ID......971110801CDate Extracted...11/18/97Lab File Name....1971119a11.dDate Analyzed...11/19/97Concentration Level...LOWTime Injected...16:56

Method..... L8080.m Dilution Factor...: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

Surrogate Ana CAS Number	alytes Analyte	% Recovery	Flags	Recovery Lower -		2 2 2 2 2 3 3 4 5 2 5
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	100% 108%	-	10 - 10 -		SURROGATE SURROGATE
Target Analyt	tes Analyte	Results (ug/Kg)	Flag	S	EQL	
11104-28-2 319-84-6 11141-16-5 12674-11-2 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1232 Aroclor-1016 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL			66.0 1.70 33.0 33.0 1.70	
319-85-7 76-44-8 53469-21-9 319-86-8 309-00-2	beta-BHC Heptachlor Aroclor-1242 delta-BHC Aldrin	< EQL < EQL < EQL < EQL < EQL			1.70 1.70 33.0 1.70 1.70	
12672-29-6 1024-57-3 5103-74-2 5103-71-9 959-98-8	Aroclor-1248 Heptachlor epoxide gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL < EQL			33.0 1.70 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	1.40 < EQL < EQL < EQL 2.60		J	3.30 3.30 33.0 3.30 3.30	
33213-65-9 50-29-3 8001-35-2 7421-93-4 1031-07-8	Endosulfan II 4.4'-DDT Toxaphene Endrin aldehyde Endosulfan sulfate	< EQL 2.00 < EQL < EQL < EQL		J	3.30 3.30 66.0 3.30 3.30	
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL			33.0 17.0 3.30	

Date Printed: 11/20/97 10:54

ANALYTICAL RESULTS

Client Sample ID....: **SBF004** Data Type..... SAMPLE

Method..... L8080.m Dilution Factor....: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

Surrogate Ana	alytes Analyte	% Recovery	Flags	Recovery Limits Lower - Upper	《春亭》 建二百名 宝岳雄
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	92 % 108 %		10 - 120 10 - 140	SURROGATE SURROGATE
Target Analyt CAS Number	t es Analyte	Results (ug/Kg)	Flag	s EQL	
11104-28-2 319-84-6 11141-16-5 12674-11-2 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1232 Aroclor-1016 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL < EQL		66.0 1.70 33.0 33.0 1.70	
319-85-7 76-44-8 53469-21-9 319-86-8 309-00-2	beta-BHC Heptachlor Aroclor-1242 delta-BHC Aldrin	< EQL < EQL < EQL < EQL < EQL		1.70 1.70 33.0 1.70 1.70	
12672-29-6 1024-57-3 5103-74-2 5103-71-9 959-98-8	Aroclor-1248 Heptachlor epoxide gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL <eql 2.40 2.60 < EQL</eql 	Ą	33.0 1.70 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4,4'-DDE Dieldrin Aroclor-1254 Endrin 4,4'-DDD	8.80 1.30 < EQL < EQL 6.90	,	3.30 3.30 33.0 3.30 3.30	
33213-65-9 50-29-3 8001-35-2 7421-93-4 1031-07-8	Endosulfan II 4,4'-DDT Toxaphene Endrin aldehyde Endosulfan sulfate	< EQL 11.0 < EQL < EQL < EQL		3.30 3.30 66.0 3.30 3.30	
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL		33.0 17.0 3.30	

000000

Work Order # 97-11-108 Ross Analytical Services, Inc

Reported: 11/21/97

QUALITY CONTROL *****

Work Order # 97-11-108 Ross Analytical Services, Inc

Reported: 11/20/97

MERCURY QC SUMMARY

Laboratory Control Sample, LCSS5650

Target

% Recovery

Mercury

81

Laboratory Method Blank, PBS5443

Target	Result (mg/Kg)	EQL (mg/Kg)
Mercury	<eol< th=""><th>0.08</th></eol<>	0.08

Matrix Spike/Matrix Spike Duplicate Pair Performed on Soil BF-003 (Lab No. 01)

	MS	MSD	
Target	<pre>% Recovery</pre>	% Recovery	RPD
=======================================			=======================================
Mercury	102	104	2

00000

Work Order # 97-11-108 Ross Analytical Services, Inc

Reported: 11/21/97

_____ ICP METALS BLANKS

11/19/97 15:08:54

QA/QC Summary Report

Work Order: 9711108 Client: ENTACT

BLANK

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 1 PBS5442 ICP_S B P S 1.0 1.01 1.01 BW

1 PBS5442 ICP_S B P S

		Detection	Specs	
Analytes	Result	Limit	Low High	v
Aluminum	ND	10		<u> </u>
Antimony	ND	10		<u> </u>
Arsenic	ND	10		Y
Barium	ND	0.40		Y
Beryllium	ND	0.20		<u> </u>
Boron		5.0		<u> </u>
Cadmium	ND	0.50		Y
Calcium	ND	20		<u> </u>
Chromium	ND	1.0		<u> </u>
Cobalt	ND	1.0		Y
Copper	ND	2.0		Y
Iron	<u>ND</u>	10		Y
Lead	ND	5.0		<u> </u>
Lithium	ND	2.0		Y
Magnesium	ND	10		<u>Y</u>
Manganese	ND	0.50		<u> </u>
Molybdenum	ND	1.0		<u> </u>
Nickel	ND	2.0		<u> </u>
Potassium	ND	20		<u> </u>
Selenium	ND	10		<u> </u>
Silicon	ND	50		<u> </u>
Strontium	ND	1.0		<u> Y</u>
Silver	ND	1.0		<u> </u>
Sodium	ND	20		<u> </u>
Thallium	ND	20		<u> </u>
Tin	ND	10		<u>Y</u>
Vanadium	ND	1.0		<u> </u>
Zinc	ND	2.0		<u>Y</u>
Titanium	ND	5.0		<u> </u>
Zirconium	ND	2.0		<u> </u>

Page 2

00001

Reported: 11/21/97

Work Order # 97-11-108 Ross Analytical Services, Inc

ICP METALS LABORATORY CONTROL SAMPLES

11/19/97 15:08:54

QA/QC Summary Report

Work Order: 9711108 Client: ENTACT

SPIKE

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 2 LCSS5649 ICP_S K L S 1 1.0 1.0 1.0 1.0 1

		Unspiked	Detection	Spike	Rec-	s_1	pecs	
Analytes	Result	Result	Limit	Value	overy	Low	High	
Aluminum	4126	ND	10	4280	96.4	53.04	153.0	
Antimony	127	ND	10	116	109	20.00	272.4	
Arsenic	94	ND	10	9 <u>5</u>	98.9	49.00	153.2	
Barium	90.51	ND	0.40	97.70	92.6	70.01	<u>136.1</u>	
Beryllium	93.01	ND	0.20	96.50	96.4	64.04	138.9	
Boron	90.4	ND	5.0	93.4	96. 8	82.01	117.8	
Cadmium	99.97	ND	0.50	106.00	94.3	58.96	139.6	
Calcium	4398	ND	2.0	4490	98.0	67.93	136.1	
Chromium	80.4	ND	1.0	82.3	97.7	59.05	138.5	
Cobalt	90.1	ND	1.0	91.9	98.0	63.00	139.3	
Copper	100.9	ND	2.0	94.9	106	61.01	141.2	
Iron	6917	ND	10	6490	107	67.03	134.1	
Lead	88.5	ND	5.0	91.7	96.5	53.98	139.6	
Lithium	99.2	ND	2.0	97.3	102	85.61	114.1	
Magnesium	1752	ND	10 _	1810	96.8	62.98	140.9	
Manganese	138.16	ND	0.50	138.00	100	68.99	134.8	
Molybdenum	100.3	ND	1.0	93.1	108	61.01	140.7	
Nickel	100.3	ND	2.0	99.5	101	58.99	142.7	
Potassium	1690	ND	20	1680	101	63.10	132.7	
Selenium	102	ND	10	99	103	49.04	146.0	
Silicon	330	ND	50	143	231 *	89.51	110.5	
Strontium	103.3	ND	1.0	112.0	92.2	81.34	118.8	
Silver	94.5	ND	1.0	90.6	104	<u>38.96</u>	146.8	
Sodium	4079	ND	20	4080	100	<u>51.96</u>	146.1	
Thallium	93	ND	20	91	102	49.01	153.4	
Tin	91	ND	10	103	88.3	49.03	151.5	
Vanadium	85.2	ND	1.0	84.8	100	68.04	135.6	
Zinc	94.8	ND	2.0	98.6	96.1	<u>57.00</u>	152.1	
Titanium	171.6	ND	5.0	182.0	94.3	60.44	139.6	
Zirconium	90.6	ND	2.0	83.4	109	82.97	117.0	

Page 4

Work Order # 97-11-108 Ross Analytical Services, Inc

_____ ICP METALS MATRIX SPIKE/MATRIX SPIKE DUPLICATE PAIRS

Page 7

11/19/97 15:08:54

QA/QC Summary Report

Work Order: 9711108 Client: ENTACT

MATRIX SPIKE

Test Class/ Matrix/ Ref Spk Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 4 108-01B-S ICP_S K M S 3 1.0 1.03 1.01 BW

		Unspiked	Detection	Spike	Rec-	Sp	ecs
Analytes	Result	Result	Limit	Value	overy	Low	High
Aluminum	7004	1890	10	4854	105	75	125
Antimony	139	ND	10	194	71.6 *	75	125
Arsenic	184	10	10	194	89.7	75	125
Barium	204.13	20.14	0.39	194.17	94.8	75	125
Beryllium	177.07	ND	0.19	194.17	91.2	75	125
Boron	178.9	ND	4.9	194.2	92.1	75	125
Cadmium	171.28	ND	0.49	194.17	88.2	75	125
Calcium	18077	14896	19	4854	65.5 *	75	125
Chromium	181.8	4.4	1.0	194.2	91.3	75	125
Cobalt	180.2	3.2	1.0	194.2	91.1	75	125
Copper	188.3	10.6	1.9	194.2	91.5	75	125
Iron	15224	11798	10	3883	88.2	75	125
Lead	189.0	11.9	4.9	194.2	91.2	75	125
Lithium	192.1	3.7	1.9	194.2	97.0	75	125
Magnesium	9355	5501	10	3883	99.3	75	125
Manqanese	492.59	330.13	0.49	194.17	83.7	75	125
Molybdenum	178.9	1.0	1.0	194.2	91.6	75	125
Nickel	182.2	9.5	1.9	194.2	88.9	75	125
Potassium	3942	284	19	3883	94.2	75	125
Selenium	184	ND	10	194	94.8	75	125
Silicon	405	261	49	194	74.2 *	75	125
Strontium	194.3	18.4	1.0	194.2	90.6	75	125
Silver	181.6	ND.	1.0	194.2	93.5	75	125
Sodium	4662	37	19	4854	95.3	75	125
Thallium	181	ND	19	194	93.3	75	<u>125</u>
Tin	168	ND	10	194	86.6	75	125
Vanadium	185.4	4.5	1.0	194.2	93.2	75	125
Zinc	216.9	43.9	1.9	194.2	89.1	<u>75</u>	125
Titanium	232.6	49.0	4.9	194.2	94.5	75	125
Zirconium	187.6	5.4	1.9	194.2	<u>93.8</u>	75	125

11/19/97 15:08:54

QA/QC Summary Report

Work Order: 9711108 Client: ENTACT

MATRIX SPIKE DUPLICATE

Test Class/ Matrix/ Ref Spk Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 5 108-01B-SD ICP_S K M D S 3 4 1.0 1.04 1.01 BW

		Unspiked	Detection	Spike	Rec-	qZ	ecs	RPD S	Specs	Reference	
Analytes	Result	Result	Limit	Value	overy	Low	High	Low	High	Recovery RPI	o v
Aluminum	7126	1890	10	4808	109	75	125		20	105 3.7	<u>¥</u> Y
Antimony	142	ND	10	192	74.0 *	75	125		20	71.6 * 3.30	<u> Y</u>
Arsenic	187	10	10	192	92.2	75	125		20	89.7 2.7	<u> Y</u>
Barium	206.26	20.14	0.38	192.31	96.8	75	125		20	94.8 2.09	<u> Y</u>
Beryllium	175.28	ND	0.19	192.31	91.1	75	125		20	91.2 0.110	<u>Y</u>
Boron	179.5	ND	4.8	192.3	93.3	75	125		20	92.1 1.29	<u>y</u>
Cadmium	170.96	ND	0.48	192.31	88.9	75	125		20	88.2 0.79	<u>Y</u>
Calcium	18352	14896	19	4808	71.9 *	75	125		20	65.5 * 9.3	<u> Y</u>
Chromium	183.4	4.4	1.0	192.3	93.1	75	125		20	91.3 1.9	<u> Y</u>
Cobalt	178.9	3.2	1.0	192.3	91.4	75	125		20	91.1 0.32	<u>9 Y</u>
Copper	189.0	10.6	1.9	192.3	92.8	75	125		20	91.5 1.4	<u>Y</u>
Iron	16044	11798	10	3846	110	75	125		20	88.2 22.0	<u>Y</u>
Lead	188.3	11.9	4.8	192.3	91.7	75	125		20	91,2 0.54	<u> Y</u>
Lithium	192.6	3.7	1.9	192.3	98.2	75	125		20	97.0 1.2	<u>3 Y</u>
Magnesium	9605	5501	10	3846	107	75	125		20	99.3 7.40	<u> Y</u>
Manganese	513.10	330.13	0.48	192.31	<u>95.1</u>	75	125		20	83.7 12.6	<u> Y</u>
Molybdenum	179.5	1.0	1.0	192.3	92.8	75	125		20	91,6 1.3	<u>Y</u>
Nickel	183.8	9.5	1.9	192.3	90.6	75	125		20	88.9 1.8	<u>9 Y</u>
Potassium	3928	284	19	3846	94.7	75	125		20	94.2 0.52	<u>y</u>
Selenium	179	ND	10	192	93.2	75	125		20	94.8 1.7	<u>y</u>
Silicon	438	261	48	192	92.2	75	125		20	74.2 * 21.6	<u>Y</u>
Strontium	193.9	18.4	1.0	192.3	91.3	75	125		20	90.6 0.77	<u>Y</u>
Silver	182.3	ND	1.0	192.3	94.8	75	125		20	93.5 1.3	<u> Y</u>
Sodium	4660	37	19	4808	96.2	75	125		20	95.3 0.94	<u>Y</u> 0
Thallium	187	ND	19	192	97.4	<u>75</u>	125		20	93.3 4.3	<u>Y</u> 0
Tin	169	ND	10	192	88.0	75	125		20	86.6 1.6	<u>y</u>
Vanadium	185.2	4.5	1.0	192.3	94.0	75	125		20	93.2 0.85	<u>5 Y</u>
Zinc	220.4	43.9	1.9	192.3	91.8	75	125		20	89.1 2.9	<u>9 Y</u>
Titanium	232.8	49.0	4.8	192.3	<u>95.6</u>	75	125		20	94.5 1.1	<u>6 Y</u>
Zirconium	182.2	5.4	1.9	192.3	91.9	75	125		2(93.8 2.0	<u>y</u>

Page 8

000015

Work Order # 97-11-108 Ross Analytical Services, Inc Reported: 11/21/97

ICP METALS POST SPIKE/POST SPIKE DUPLICATE PAIRS 11/19/97 15:08:54

QA/QC Summary Report

Work Order: 9711108 Client: ENTACT

PCST SPIKE

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 6 108-01B-A ICP_S K P S 3 1.0 1.04 1.01 BW

		Unspiked	Detection	Spike	Rec-	Sp	ecs			
Analytes	Result	Result	Limit	Value	overy	Low	High			
Aluminum	6735	1890	10	4808	101					
Antimony	194	ND	10	192	101					
Arsenic	194	10	10	192	95.8					
Barium	210.50	20.14	0.38	192.31	99.0					
Beryllium	182.19	ND	0.19	192.31	94.7					
Boron	186.4	ND	4.8	192.3	96.9					
Cadmium	178.57	ND	0.48	192.31	92.9				 -	
Calcium	19112	14896	19	4808	87.7					
Chromium	189.9	4.4	1.0	192.3	96.5					
Cobalt	186,5	3.2	1.0	192.3	95.3					
Copper	198.1	10.6	1.9	192.3	97.5					
Iron	15067	11798	10	3846	85.0					
Lead	197.1	11.9	4.8	192.3	96.3					
Lithium	200.8	3.7	1.9	192.3	102					
Magnesium	9228	5501	10	3846	9 <u>6.9</u>					
Manganese	500.07	330.13	0.48	192.31	88.4					
Molybdenum	189.9	1.0	1.0	192.3	98.2					
Nickel	187.5	9.5	1.9	192.3	92.6					
Potassium	4114	284	19	3846	99.6					
Selenium	194	ND	10	192	101					
Silicon	432	261	48	192	89.1					
Strontium	207.0	18.4	1.0	192.3	98.1			~		
Silver	188.8	ND	1.0	192.3	98.2					
Sodium	4844	37	19	4808	100					
Thallium	193	ND	19	192	101					
Tin	179	ND	10	192	93.2					
Vanadium	192.5	4.5	1.0	192.3	97.8					
Zinc	225.5	43.9	1.9	192.3	94.4					
Titanium	238.5	49.0	4.8	192.3	98.5					
Zirconium	197.9	5.4	1.9	192.3	100					

Page 11

11/19/97 15:08:54

QA/QC Summary Report

Work Order: 9711108 Client: ENTACT

SPIKE DUPLICATE

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 7 108-01B-AD ICP_S K P D S 3 6 1.0 1.04 1.01 BW

		Unspiked	Detection	Spike	Rec-	Specs	RPD Specs	Reference	
Analytes	Result	Result	Limit	Value	overy	Low High	Low High	Recovery RPD	v
Aluminum	6718	1890	10	4808	100			101 0.995	<u>Y</u>
Antimony	194	ND	10	192	101			101 0	<u>Y</u>
Arsenic	194	10	10	192	95.8			95.8 0	<u>Y</u>
Barium	210.07	20.14	0.38	192.31	98.8			99.0 0.202	<u>Y</u>
Beryllium	181,40	ND	0.19	192.31	94.3			94.7 0.423	<u>Y</u>
Boron	185.9	ND	4.8	192.3	96.7			96.9 0.207	Y
Cadmium	177.97	ND	0.48	192.31	92.5			92.9 0.431	<u>Y</u>
Calcium	18960	14896	19	4808	84.5			87.7 3.72	Y
Chromium	189.0	4.4	1.0	192.3	96.0			96.5 0.519	<u>Y</u>
Cobalt	188.7	3.2	1.0	192.3	96.5			95.3 1.25	<u>Y</u>
Copper	198.0	10.6	1.9	192.3	97.5			97.5 0	Y
Iron	14968	11798	10	3846	82.4			85.0 3.11	<u>Y</u>
Lead	198.8	11.9	4.8	192.3	97.2			96.3 0.930	Y
Lithium	200.3	3.7	1.9	192.3	102			102 0	Y
Magnesium	9191	5501	10	3846	95. 9			96.9 1.04	<u>Y</u>
Manganese	497,48	330.13	0.48	192.31	87.0			88.4 1.60	<u>Y</u>
Molybdenum	189.4	1.0	1.0	192.3	98.0			98.2 0.204	<u>Y</u>
Nickel	186.8	9.5	1.9	192.3	92.2			92.6 0.433	Y
Potassium	4108	284	19	3846	99.4			99.6 0.201	<u>Y</u>
Selenium	190	ND	10	192	99.0			101 2.00	<u>Y</u>
Silicon	436	261	48	192	91.1			89.1 2.22	<u>Y</u>
Strontium	206.4	18.4	1.0	192.3	97.8			98.1 0.306	<u>Y</u>
Silver	189.6	ND	1.0	192.3	98.6			98.2 0.407	<u>Y</u>
Sodium	4807	3_7	19	4808	99.2			100 0.803	Y
Thallium	188	ND	19	192	<u>97.9</u>			101 3.12	<u>Y</u>
Tin	178	ND	10	192	92.7			93.2 0.538	<u>Y</u>
Vanadium	191.7	<u>4 . 5</u>	1.0	192.3	97.3			97.8 0.513	<u>Y</u>
Zinc	225.8	43.9	1.9	192.3	94.6			94.4 0.212	<u>Y</u>
Titanium	238.9	49.0	4.8	192.3	98.8			98.5 0.304	<u>Y</u>
Zirconium	199.2	<u>5.4</u>	1.9	192.3	101			100 0.995	<u>Y</u>

Page 12

Work Order # 97-11-108 Ross Analytical Services, Inc

Reported: 11/21/97

ORGANIC BLANKS

000019

Date Printed: 11/20/97 10:54

METHOD BLANK SUMMARY

Client Sample ID.....: PEST 3780

Data Type..... BLANK

Lab Sample ID.....: PEST 3780

Lab File Name....: 1971119a08.d

Concentration Level...: LOW

Date Extracted...: 11/18/97

Date Analyzed...: 11/19/97

Time Injected...: 14:24

Method...... L8080.m Dilution Factor...: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

CLIENT SAMPLE ID	RASI SAMPLE ID	DATE & TIME ANALYZED (1)	DATE & TIME ANALYZED (2)					
CS 9241 SBF003	CS 9241 971110801C	11/19/97 15:10 11/19/97 16:56						
SBF004	971110802C	11/19/97 17:41						

Date Printed: 11/20/97 10:54

ANALYTICAL RESULTS

Client Sample ID.....: PEST 3780

Data Type..... BLANK

Lab Sample ID. . . . : PEST 3780 Date Extracted. . : 11/18/97 Lab File Name. . . . : 1971119a08.d Date Analyzed. . : 11/19/97 Concentration Level. : LOW Time Injected. . : 14:24

Method..... L8080.m Dilution Factor....: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

Surrogate And CAS Number	alytes Analyte	% Recovery	Flags	Recovery Limits Lower - Upper	2 3 2 2 2 3 3 3 3 2 3 2 2 2
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	92 % 100 %		10 - 120 10 - 140	SURROGATE SURROGATE
Target Analy	tes Analyte	Results (ug/Kg)	Flags	s EQL	
11104-28-2 319-84-6 11141-16-5 12674-11-2 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1232 Aroclor-1016 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL < EQL		67.0 1.70 33.0 33.0 1.70	
319-85-7 76-44-8 53469-21-9 319-86-8 309-00-2	beta-BHC Heptachlor Aroclor-1242 delta-BHC Aldrin	< EQL < EQL < EQL < EQL < EQL		1.70 1.70 33.0 1.70 1.70	
12672-29-6 1024-57-3 5103-74-2 5103-71-9 959-98-8	Aroclor-1248 Heptachlor epoxide gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL < EQL		33.0 1.70 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	< EQL < EQL < EQL < EQL < EQL		3.30 3.30 33.0 3.30 3.30	
33213-65-9 50-29-3 8001-35-2 7421-93-4 1031-07-8	Endosulfan II 4.4'-DDT Toxaphene Endrin aldehyde Endosulfan sulfate	< EQL < EQL < EQL < EQL < EQL		3.30 3.30 67.0 3.30 3.30	
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL		33.0 17.0 3.30	

Work Order # 97-11-108 Ross Analytical Services, Inc

Reported: 11/21/97

ORGANIC LABORATORY CONTROL SAMPLES ******************

Date Printed: 11/20/97 10:54

ANALYTICAL RESULTS

Client Sample ID. . . . : CS 9241 Data Type. : METHSPIKE

Method..... L8080.m Dilution Factor...: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

Surrogate Ana CAS Number	l ytes Analyte	% Recovery	Flags	Recovery Limits Lower - Upper	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	100% 115%		10 - 120 10 - 140	SURROGATE SURROGATE
Spike Analytes CAS Number	s Analyte	% Recovery	Flags	Recovery Limits Lower - Upper	
58-89-9 76-44-8 309-00-2 60-57-1 72-20-8	gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin	94% 106% 94% 103% 109%		46 - 127 35 - 130 34 - 132 31 - 134 42 - 139	SPIKE SPIKE SPIKE SPIKE SPIKE
50-29-3	4.4'-DDT	100%		23 - 134	SPIKE
Target Analyte	es Analyte	Results (ug/Kg)		s EQL	
11104-28-2 319-84-6 11141-16-5 12674-11-2 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1232 Aroclor-1016 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL 16.0		67.0 1.70 33.0 33.0 1.70	SPIKE
319-85-7 76-44-8 53469-21-9 319-86-8 309-00-2	beta-BHC Heptachlor Aroclor-1242 delta-BHC Aldrin	< EQL 18.0 < EQL < EQL 16.0		1.70 1.70 33.0 1.70	SPIKE SPIKE
12672-29-6 1024-57-3 5103-74-2 5103-71-9 959-98-8	Aroclor-1248 Heptachlor epoxide gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL < EQL		33.0 1.70 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	0.650 34.0 < EQL 36.0 < EQL		J 3.30 3.30 33.0 3.30 3.30 3.30	SPIKE SPIKE

Date Printed: 11/20/97 10:54

ANALYTICAL RESULTS

Client Sample ID.....: CS 9241
Data Type...... METHSPIKE

Lab Sample ID. : CS 9241 Lab File Name. : 1971119a09.d Date Extracted....: 11/18/97 Date Analyzed....: 11/19/97 Concentration Level...: LOW Time Injected....: 15:10

Method..... L8080.m

Dilution Factor...: 1
Percent Moisture...: 0 % Undecanted Compound Sub-List....: 8081

Target Analytes CAS Number Analyte		Results (ug/Kg)	Flags	EQL	
33213-65-9	Endosulfan II	< EQL	J	3.30	
50-29-3	4,4'-DDT	33.0		3.30 SPIKE	
8001-35-2	Toxaphene	< EQL		67.0	
7421-93-4	Endrin aldehyde	0.870		3.30	
1031-07-8	Endosulfan sulfate	< EQL		3.30	
11096-82-5	Aroclor-1260	< EQL	J	33.0	
72-43-5	Methoxychlor	< EQL		17.0	
53494-70-5	Endrin ketone	0.560		3.30	

YUUICE JOINNIN	VIIIIII	UL JJ3	זעטו
----------------	---------	--------	------

4/1-11-108

ENTACT

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph 630/616-2100 Fax 630/616-9203

Sampler:_	Zanki .	Job #:	C176
			\sim

ENTACT Contact: Shave Bank Date: 11/19997

RUCH	Tur	naround Tir	me Requeste	ed
24 Hourt	48 Hour	3 Day[_]	Normal [Other

Sample No.	Matrix	Composite or Grab	Description/Remarks	Preservative	Analýsis
Ex Ous	sand	jrab	4-402 4/415 javs	ice (4°C)	ABCD
	-				

Samples Relinquished By: Jacob Relinquished B	LYSIS
Date A= Total RCRA metals	F=
Date B= Total Peladrocar bons	G=
Samples Relinquished By: C= Pesticides	H=
Samples Received By: Date D= Sil PH	l=
Samples Relinquished By: / E=	J=
Condition of Sample Upon Receipt:	Distribution:
Bottles Intact? Yes / No Volatiles Free of Headspace? Yes / No COC Seals Present and Infact? Yes / No 2	nd Copy - To Job File rd Copy - To Lab

CHAIN OF JSTODY

97-11-108

EN	TACT

Sample No.

1360 N. Wood Dale Rd. Suite A Wood Dale, Illinois 60191 Ph. 630/616-2100 Fax 630/616-9203

Composite

or Grab

Matrix

	ENTACT Conta	act: S. BANUI	Date:11	791
	24 Hour X 48	Turnaround Tim 3 Hour 3 Day	e Requested Normal Other	
Desc	ription/Remar		Preservative	Analysis
1/2/5	irrs	:	ie (4°c)	ABCT
	/			

	1	<u> </u>	4414		
	1				
	<u> </u>				
		ŧ			
					· · · · · · · · · · · · · · · · · · ·
1		İ			
			!		مين -
	<u> </u>	<u> </u>			
·					
	 	 			
]				
	1	 			
	•	"			
BF 004	Gall	7140	7-902 91413 141	ke 190)	45CL
tot and	Gil	4 1/3 /	4-402 glass jurs	ie (4°c)	ADAT

Samples Relinquished By:	11-17-97	AN	IALYSIS	7.1
A contract of the contract of	Date	A= Total RCRA metals		, ·
Samples Received By: Delle 9m	///) <u> </u>	B= Total Petroleum Hydrocarbons	G=	
Samples Relinquished By:	///Øate/2	C= <u>posticites</u>	H=	
Samples Received By:		D= soil pH	= <u></u>	
Samples Relinquished By:	/ Dátě /	E=	J=	
Condition of Sample Upon Receipt:	Date		Distribution:	er w Final Reso
Bottles Intact? Yes // No Volatiles Free of Headspace	? Yes / No COC Se	eals Present and Intact7 Yes / No	2nd Copy - To Job File	er w/Final Repor

Appendix G

Backfill Laboratory Analytical

Ross Analytical Services, Inc. 16433 Foltz Industrial Parkway • Strongsville, Ohio 44136

16433 Foltz Industrial Parkway • Strongsville, Ohio 44136 (216) 572-3200 • Fax (216) 572-7620 • 1-800-325-7737

CERTIFICATE OF ANALYSIS

Client:

ENTACT

1630 Wood Dale Road Wood Dale, IL 60191

Attn: Shane Banks

Purchase Order: C176

Work Order #: 97-11-132 Client Code: ENTACT Report Date: 11/26/97

Work ID: Waste Character, TPH, Pests.

Date Received: 11/19/97

SAMPLE IDENTIFICATION

Lab	Sample	Lab	Sample
Number	Description	Number	Description
01	BF-005	02	BF-006

Enclosed are the analytical results for the samples listed above. Analyses were performed by the methods referenced in the Test Methodologies section, while any special circumstances are described in the Report Comments section. Unless otherwise noted, sample results are not moisture-corrected. Most analytes are reported relative to an Estimated Quantitation Limit (EQL), which is the lowest concentration that can be reliably measured under routine laboratory conditions. Questions or comments concerning the enclosed results should be directed to your Client Services Representative.

Analysis for mercury was done at American Analytical Labs

Their results are included

Certificate approved by

Carol L. Turner

Ross Analytical Services, Inc

DATA QUALIFIER FLAGS FOR ORGANIC ANALYSES

Some or all of the organics results for this Work Order are reported using the U.S. EPA's Contract Laboratory Program (CLP) forms and/or data qualifiers. Analyses may have been performed according to CLP protocol or by SW-846 methodologies. The qualifier flags most commonly used on the report forms are described below.

- U The compound was analyzed for but not detected. The value reported is either the Contract Required Quantitation Limit (CRQL) for analyses by CLP protocol, or the Estimated Quantitation Limit (EQL) for analyses by SW-846 methodologies.
- J The result reported is estimated, most commonly because the compound was detected, but at a concentration below the CRQL or EQL.
- P The percent difference between the results determined from the primary and secondary GC columns was greater than 25%. The value reported is the lower of the two results.
- B The compound was also detected in the blank associated with the sample.
- E The concentration exceeded the upper level of the calibration range of the instrument. A valid result for the compound in question must be obtained from a diluted analysis, if possible.
- D The result was quantified from a dilution of the original sample.

Reported: 11/26/97

TEST METHODOLOGIES

pH in solids and non-aqueous liquids was determined electrometrically following slurrying with water as in EPA Method 9045C.

Organochlorine pesticides and PCB's were determined using gas chromatography with electron capture detection as in EPA Method 8081.

Metals were determined in solid and non-aqueous liquid samples by digestion with nitric acid, hydrogen peroxide, and hydrochloric acid as in EPA Method 3050A, followed by Inductively Coupled Plasma Emission Spectroscopy as in EPA Method 6010A, unless noted otherwise.

Total petroleum hydrocarbons were determined by infrared spectroscopy following extraction with Freon-113 as in EPA Method 418.1. Solids were Soxhlet extracted as in EPA Method 9071.

Solid and semisolid samples extracted for organochlorine pesticides and PCB's in an ultrasonic extractor using methylene chloride and acetone as in EPA Method 3550A.

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 12/10/97

Sample Description BF-005 Test Description TRPH by EPA 418.1 Test Code HCIR

Lab No. 01

 Date Run
 11/21/97
 Dilution Factor
 1
 Units
 mg/Kq

Compound

Result EQL

Petroleum hydrocarbons

110 30

000002D

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 12/10/97

Sample Description BF-006

Lab No. 02

Test Description TRPH by EPA 418.1 Test Code HCIR

Date Run 11/21/97 Dilution Factor 1 Units mg/Kg

Compound Result EQL

Petroleum hydrocarbons 80 30

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

Sample	Description:	BF-005

Lab	No.	:	01

Analyte Description	Result	Units	EQL
pH by EPA 9045C	7.39	Standard units	
Arsenic by ICP	17	mg/Kg	10
Barium by ICP	32.4	mg/Kg	0.38
Cadmium by ICP	1.42	mg/Kg	0.48
Chromium by ICP	10.7	mg/Kg	1.0
Lead by ICP	12.7	mg/Kg	4.8
Selenium by ICP	<eql< td=""><td>mg/Kg</td><td>10</td></eql<>	mg/Kg	10
Silver by ICP	<eql< td=""><td>mg/Kg</td><td>1.0</td></eql<>	mg/Kg	1.0

Sample Description: BF-006

Lab	No.	:	02

Analyte Description	Result	<u>Units</u>	ROL
pH by EPA 9045C	7.27	Standard units	
Arsenic by ICP	15	mg/Kg	10
Barium by ICP	55.8	mg/Kg	0.39
Cadmium by ICP	0.74	mg/Kg	0.49
Chromium by ICP	14.0	mg/Kg	1.0
Lead by ICP	22.4	mg/Kg	4.9
Selenium by ICP	<eql< td=""><td>mg/Kg</td><td>10</td></eql<>	mg/Kg	10
Silver by ICP	<eql< td=""><td>mg/Kg</td><td>1.0</td></eql<>	mg/Kg	1.0

ANALYTICAL RESULTS

Client Sample ID: Data Type			
Lab Sample ID: Lab File Name: Concentration Level:	1971121a17.d (1), m971121a17.d (2	Date Extracted:) Date Analyzed: Time Injected:	11/22/97

MethodL8080.mDilution Factor1Compound Sub-List8081Percent Moisture0 % Undecanted

Surrogate Anal	ytes Analyte	% Recovery	Flags	Recovery Lower -		基础基本 定量 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	92% 115%		10 - 10 -		SURROGATE SURROGATE
Target Analyte CAS Number	es Analyte	Results (ug/Kg)		\$	EQL	
11104-28-2 319-84-6 12674-11-2 11141-16-5 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1016 Aroclor-1232 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL			67.0 1.70 33.0 33.0 1.70	
319-85-7 76-44-8 319-86-8 309-00-2 53469-21-9	beta-BHC Heptachlor delta-BHC Aldrin Aroclor-1242	2.60 < EQL < EQL < EQL < EQL)	1.70 1.70 1.70 1.70 33.0	
1024-57-3 12672-29-6 5103-74-2 5103-71-9 959-98-8	Heptachlor epoxide Aroclor-1248 gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL			1.70 33.0 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	< EQL < EQL < EQL < EQL	• •		3.30 3.30 33.0 3.30 3.30	
33213-65-9 50-29-3 8001-35-2 7421-93-4 1031-07-8	Endosulfan II 4.4'-DDT Toxaphene Endrin aldehyde Endosulfan sulfate	< EQL < EQL < EQL < EQL < EQL	•		3.30 3.30 67.0 3.30 3.30	
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL	•		33.0 17.0 3.30	

00000:

ANALYTICAL RESULTS

Client Sample ID. . . . : S BF-006 Data Type. . . . : SAMPLE

Concentration Level...: LOW Time Injected....: 03:39 Method..... L8080.m

Dilution Factor...: 1
Percent Moisture...: 0 % Undecanted Compound Sub-List...: 8081

Surrogate Anal CAS Number	ytes Analyte	% Recovery	Flags	Recovery Lower -		
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	92% 108%		10 - 10 -		SURROGATE SURROGATE
Target Analyte CAS Number	s Analyte	Results (ug/Kg)	Flags	5	EQL	
11104-28-2 319-84-6 12674-11-2 11141-16-5 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1016 Aroclor-1232 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL < EQL			66.0 1.70 33.0 33.0 1.70	
319-85-7 76-44-8 319-86-8 309-00-2 53469-21-9	beta-BHC Heptachlor delta-BHC Aldrin Aroclor-1242	1.60 < EQL < EQL < EQL < EQL)	1.70 1.70 1.70 1.70 1.70 33.0	
1024-57-3 12672-29-6 5103-74-2 5103-71-9 959-98-8	Heptachlor epoxide Aroclor-1248 gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL			1.70 33.0 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4,4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	1.20 < EQL < EQL < EQL < EQL		p	3.30 3.30 33.0 3.30 3.30	
33213-65-9 50-29-3 8001-35-2 7421-93-4 1031-07-8	Endosulfan II 4.4'-DDT Toxaphene Endrin aldehyde Endosulfan sulfate	< EQL < EQL < EQL < EQL			3.30 3.30 66.0 3.30 3.30	
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL			33.0 17.0 3.30	

Date Printed: 11/24/97 14:48 Ross Analytical Services, Inc.

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

****** QUALITY CONTROL *****

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

ICP METALS METHOD BLANKS

Page 1

11/24/97 12:33:58

QA/QC Summary Report

Work Order: 9711132 Client: ENTACT

BLANK

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 1 PBS5454 ICP_S 3 P S 1.0 1.00 1.01 CSM

		Detection	Specs		
Analytes	Result	Limit	Low High	ı	v
Aluminum	ND	10			 _ Y
Antimony	ND	10			_ <u>Y</u>
Arsenic	ND	10			 _ <u>Y</u>
Barium	ND	0.40			_ <u>X</u>
Beryllium	ND	0.20	- 		 <u> </u>
Boron	ND	5.0		·	 _ <u>Y</u>
Cadmium	ND	0.50			_ <u>¥</u>
Calcium	ND	20			_ <u>Y</u>
Chromium	<u>ND</u>	1.0			 _ <u>¥</u>
Cobalt	ND	1.0			 _ <u>Y</u>
Copper	ND	2.0		·	 <u> </u>
Iron	ND	10			 _ <u>X</u>
Lead	ND	5.0			- X
Lithium	ND	2.0			 <u> </u>
Magnesium	ND	10			 _ <u>X</u>
Manganese	ND	0.50			 _ <u>Y</u>
Molybdenum	<u>ND</u>	1.0			 _ <u>¥</u>
Nickel	ND	2.0			 _ <u>¥</u>
Potassium	ND	20		- 	_ <u> </u>
Selenium	ND	10			 _ <u>Y</u>
Silicon	ND	50			 _ <u>¥</u>
Strontium	ND	1.0			 _ <u>Y</u>
Silver	ND ND	1.0			 <u> </u>
Sodium	NDND	20			
Thallium	ND	20			 <u> </u>
Tin	ND	10			 <u> </u>
Vanadium	ND	1.0			 <u>Y</u>
Zinc	ND	2.0			 _ <u>Y</u>
Titanium	ND	5.0			 <u> </u>
Zirconium	ND	2.0			 <u> </u>

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

ICP METALS LABORATORY CONTROL SAMPLES ______

Page 2

11/24/97 12:33:58

QA/QC Summary Report

Work Order: 9711132 Client: ENTACT

SPIKE

Test Class/ Matrix/ Ref Spk Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 2 LCSS5661 ICP_S K L S 1 1.0 1.3 1.0 1 CSM

Result Result Limit Value Overy Low High Aluminum 4468 ND 10 4280 104 53.04 153.0 Antimony 126 ND 10 116 109 20.00 272.4 Arsenic 39 ND 10 95 104 49.00 153.2 Barium 96.12 ND 2.40 97.70 33.4 70.01 136.1 Beryllium 92.60 ND 0.20 96.50 136.2 64.04 138.3 Boron 91.5 ND 5.0 93.4 23.0 82.01 117.8 Boron 91.5 ND 5.0 93.4 23.0 82.01 117.8 Cadmium 103.25 ND 0.50 106.00 97.4 58.96 139.5 Calcium 4403 ND 20 4490 33.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 39.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 112 61.01 141.2 Copper 106.5 ND 2.0 94.9 112 61.01 141.2 Copper 104.6 ND 2.0 94.9 112 61.01 141.2 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 128 55.61 114.1 Magnesium 1818 ND 10 6490 117 67.03 134.1 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 128 55.61 144.1 Magnesium 1818 ND 10 1810 130 62.98 140.9 Manqanese 140.09 ND 0.50 138.00 122 68.99 134.8 MOlydenum 101.2 ND 1.0 93.1 129 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 89.99 142.7 Potassium 1798 ND 2.0 99.5 102 89.91 126.0 S1.00 126.0 S1.00 127 63.10 132.0 S1.00 122.0 S1.00 133.8 140.9 S1.00 S1.00 122.0 S1.00 133.8 140.9 S1.00 S1.			Unspiked	Detection	Spike	Rec-	S	ecs	
Antimony 126 ND 10 115 129 20.00 272.4 Arsenic 99 ND 10 95 124 49.00 153.2 Barium 96.12 ND 0.40 97.70 23.4 70.01 136.1 Beryllium 92.60 ND 0.20 96.50 25.0 64.04 138.3 Boron 91.5 ND 5.0 93.4 23.0 82.01 117.8 Cadrium 103.25 ND 0.50 106.00 27.4 58.96 139.6 Calcium 4403 ND 20 4490 23.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 82.3 99.0 59.05 138.5 Cobper 106.5 ND 2.0 94.9 112 61.01 141.2 Iron 75.98 ND	Analytes	Result	Result	Limit	Value	overy	Low	High	
Arsenic 99 ND 10 95 124 49.00 153.2 Barium 96.12 ND 0.40 97.70 23.4 70.01 136.1 Beryllium 92.60 ND 0.22 96.50 25.0 64.04 138.3 Boron 91.5 ND 5.0 93.4 23.0 82.01 117.8 Cadmium 103.25 ND 0.80 106.00 27.4 58.96 139.6 Calcium 4403 ND 20 4490 23.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 39.0 59.05 138.5 Cobalt 92.8 ND 1.0 82.3 39.0 59.05 138.5 Cobalt 92.8 ND 1.0 89.2 39.0 139.3 Copper 106.5 ND 2.0 94.9 122 61.01 141.2 Iron 7598 ND 1.0 649.0 </td <td>Aluminum</td> <td>4468</td> <td>ND</td> <td>10 _</td> <td>4280</td> <td></td> <td><u>53.04</u></td> <td>153.0</td> <td></td>	Aluminum	4468	ND	10 _	4280		<u>53.04</u>	153.0	
Barium 96.12 ND 2.40 97.70 33.4 70.01 136.1 Beryllium 92.60 ND 0.22 96.53 35.0 64.04 138.3 Boron 91.5 ND 5.0 93.4 23.0 82.01 117.8 Cadmium 103.25 ND 0.50 106.00 37.4 58.96 139.5 Calcium 4403 ND 20 4490 33.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101.63.00 139.3 Copper 106.5 ND 2.0 94.9 112.61.01 141.2 Iron 7598 ND 1.0 6490 117.67.03 134.1 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3	Antimony	126	ND	10 _	116		20.00	272.4	
Beryllium 92.60 ND 2.22 96.52 35.0 64.04 138.9 Boron 91.5 ND 5.0 93.4 \$3.0 82.01 117.8 Cadmium 103.25 ND 0.50 106.00 \$7.4 \$8.96 139.6 Calcium 4403 ND 20 4490 \$3.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 12 61.01 141.2 Iron 7598 ND 10 6490 17 67.03 134.1 Lead 88.4 ND 5.0 91.7 \$5.4 \$3.98 139.6 Lithium 104.6 ND 2.0 97.3 133 85.61 114.1 Magnesium 1818 ND	Arsenic	99	ND	10	95	:34	49.00	<u>153.2</u>	
Boron 91.5 ND 5.0 93.4 33.0 82.01 117.8 Cadmium 103.25 ND 0.50 106.00 97.4 58.96 139.5 Calcium 4403 ND 20 4490 33.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 112 61.01 141.2 Iron 7598 ND 10 6490 117 67.03 134.1 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 123 85.61 114.1 Magnassum 1818 ND 10 1810 10.9 62.98 140.9 Manganese 140.09 ND	Barium	96.12	ND	0.40	97.70	93.4	70.01	<u>136.1</u>	
Cadmium 103.25 ND 9.50 106.00 37.4 59.96 139.6 Calcium 4403 ND 20 4490 38.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 12 61.01 141.2 Iron 7598 ND 10 6490 17 67.03 134.1 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 123 85.61 114.1 Magnesium 1818 ND 10 1810 120 62.98 140.9 Manganese 140.09 ND 0.50 138.00 122 68.99 134.8 Molybdenum 101.2 ND </td <td>Beryllium</td> <td>92.60</td> <td>ND</td> <td><u> </u></td> <td>96.50</td> <td><u>95.0</u></td> <td>64.04</td> <td><u>138.9</u></td> <td>_</td>	Beryllium	92.60	ND	<u> </u>	96.50	<u>95.0</u>	64.04	<u>138.9</u>	_
Calcium 4403 ND 20 4490 33.1 67.93 136.1 Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 112 61.01 141.2 Iron 7598 ND 10 6490 117 67.03 134.1 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 138.95.61 114.1 Magnesium 1818 ND 10 1810 130.62 29.8 140.9 Manganese 140.09 ND 0.50 138.00 132.68 140.9 134.8 Molybdenum 101.2 ND 1.0 93.1 139.61.01 140.7 Nickel 101.8 ND 2.0	Boron	91.5	ND	5.0	93.4	<u> 33.0</u>	82.01	<u>117.8</u>	
Chromium 81.5 ND 1.0 82.3 99.0 59.05 138.5 Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 112 61.01 141.2 Iron 7598 ND 10 6490 117 67.03 134.1 Lead 88.4 ND 5.0 91.7 25.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 138.85 139.66 114.1 Magnesium 1818 ND 10 1810 130.05 62.98 140.9 Manganese 140.09 ND 0.50 138.00 122.6 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139.61.01 140.7 Nickel 101.8 ND 2.0 99.5 102.58.99 142.7 Potassium 1798 ND 2.0	Cadmium	103.25	ND	0.50	106.00	97.4	<u>58.96</u>	<u>139.5</u>	_
Cobalt 92.8 ND 1.0 91.9 101 63.00 139.3 Copper 106.5 ND 2.0 94.9 112 51.01 141.2 Iron 7598 ND 10 6490 117 67.03 134.1 Lead 88.4 ND 5.0 91.7 95.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 128 85.61 114.1 Magnesium 1818 ND 10 1810 130 62.98 140.9 Manganese 140.09 ND 0.50 138.00 122 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 207 63.10 132.7 Selenium 105 ND	Calcium	4403	ND	20	4490	<u> 33.1</u>	67.93	<u>136,1</u>	_
Copper 106.5 ND 2.0 94.9 112 61.01 141.2 Iron 7598 ND 10 6490 217 67.03 134.1 Lead 88.4 ND 5.0 91.7 26.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 128 85.61 114.1 Magnesium 1818 ND 10 1810 130 62.98 140.9 Manganese 140.09 ND 0.50 138.00 122 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 129 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 89.51 110.5 Strontium 110.1 ND 1.0 12.0 73.3 81.34 118.8 Silver 102.2 ND 1.0 90.5 123 38.96 146.8 Sodium 4484 ND 20 4080 120 51.96 146.1 Thallium 103 ND 20 90.5 123 49.01 153.4 Tin 97 ND 10 103 34.2 49.03 151.5 Vanadium 89.0 ND ND 2.0 98.6 24.2 57.00 152.1 Titanium 182.0 N	Chromium	81.5	ND	1.0	82.3	99.0	59.05	138.5	
Iron 7598 ND 10 6490 11 67.03 134.1 Lead 88.4 ND 5.0 91.7 95.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 123 85.61 114.1 Magnesium 1818 ND 10 1810 130 62.98 140.9 Manganese 140.09 ND 0.50 138.00 122 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 <td>Cobalt</td> <td>92.8</td> <td>ND</td> <td>1.0</td> <td>91.9</td> <td>101</td> <td>63.00</td> <td><u>139.3</u></td> <td>_</td>	Cobalt	92.8	ND	1.0	91.9	101	63.00	<u>139.3</u>	_
Lead 88.4 ND 5.0 91.7 95.4 53.98 139.6 Lithium 104.6 ND 2.0 97.3 103 85.61 114.1 Magnesium 1818 ND 10 1810 130 62.98 140.9 Manganese 140.09 ND 0.50 138.00 122 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 75.3 81.34 118.8 Silver 102.2 ND	Copper	106.5	ND	2.0	94.9	1:2	61.01	141.2	
Lithium 104.6 ND 2.0 97.3 138 85.61 114.1 Magnesium 1818 ND 10 1810 130 62.98 140.9 Manganese 140.09 ND 0.50 138.00 132 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 93.3 81.34 118.8 Silver 102.2 ND 1.0 90.5 113 38.96 146.8 Sodium 4484 ND <th< td=""><td>Iron</td><td>7598</td><td>ND</td><td>10</td><td>6490</td><td>117</td><td>67.03</td><td><u>134.1</u></td><td></td></th<>	Iron	7598	ND	10	6490	117	67.03	<u>134.1</u>	
Magnesium 1818 ND 10 1810 130 62.98 140.9 Manganese 140.09 ND 0.50 138.00 132 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 75.3 81.34 118.8 Silver 102.2 ND 1.0 90.5 113 38.96 146.8 Sodium 4484 ND 20 4080 120 51.96 146.1 Tin 97 ND 10 <td>Lead</td> <td>88.4</td> <td>ND</td> <td>5.0</td> <td>91.7</td> <td>95.4</td> <td>53.98</td> <td>139.6</td> <td></td>	Lead	88.4	ND	5.0	91.7	95.4	53.98	139.6	
Manganese 140.09 ND 0.50 138.00 132 68.99 134.8 Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 93.3 81.34 118.8 Silver 102.2 ND 1.0 90.6 113 38.96 146.8 Sodium 4484 ND 20 4080 110 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Vanadium 89.0 ND 1.0<	Lithium	104.6	ND	2.0	97.3	<u> 108</u>	85.61	<u>114.1</u>	
Molybdenum 101.2 ND 1.0 93.1 139 61.01 140.7 Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 93.3 81.34 118.8 Silver 102.2 ND 1.0 90.5 113 38.96 146.8 Sodium 4484 ND 20 4080 110 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 34.2 49.03 151.5 Vanadium 89.0 ND 1.0 <	Magnesium	1818	ND	10	1810		62.98	140.9	
Nickel 101.8 ND 2.0 99.5 102 58.99 142.7 Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 73.3 81.34 118.8 Silver 102.2 ND 1.0 90.5 113 38.96 146.8 Sodium 4484 ND 20 4080 120 51.96 146.2 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 24.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 125 68.04 135.6 Zinc 92.9 ND 2.0 98.6	Manganese	140.09	ND	0.50	138.00	: 32	68.99	134.8	
Potassium 1798 ND 20 1680 107 63.10 132.7 Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 • 89.51 110.5 Strontium 110.1 ND 1.0 112.0 93.3 81.34 118.8 Silver 102.2 ND 1.0 90.6 113 38.96 146.8 Sodium 4484 ND 20 4080 113 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 34.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 125 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 1	Molybdenum	101.2	ND	1.0	93.1	139	61.01	140.7	
Selenium 105 ND 10 99 106 49.04 146.0 Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 2.0 112.0 58.3 81.34 118.8 Silver 102.2 ND 1.0 90.6 113 38.96 146.8 Sodium 4484 ND 20 4080 120 51.96 146.2 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 54.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 125 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Nickel	101.8	ND	2.0	99.5	102	58.99	142.7	
Silicon 246 ND 50 143 172 * 89.51 110.5 Strontium 110.1 ND 1.0 112.0 53.3 81.34 118.8 Silver 102.2 ND 1.0 90.6 113 38.96 146.6 Sodium 4484 ND 20 4080 110 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 54.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 105 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Potassium	1798	ND	20	1680	107	63.10	132.7	
Strontium 110.1 ND 1.0 112.0 75.3 81.34 118.8 Silver 102.2 ND 1.0 90.6 113 38.96 146.8 Sodium 4484 ND 20 4080 110 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 54.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 105 68.04 135.6 Zinc 92.9 ND 2.0 98.6 74.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Selenium	105	ND	10	99	106	49.04	146.0	
Silver 102.2 ND 1.0 90.5 113 38.96 146.8 Sodium 4484 ND 20 4080 110 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 54.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 125 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Silicon	246	ND	50	143	172 *	89.51	110.5	
Sodium 4484 ND 20 4080 110 51.96 146.1 Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 54.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 1.25 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Strontium	110.1	ND	1.0	112.0	95.3	<u>81.34</u>	118.8	
Thallium 103 ND 20 91 113 49.01 153.4 Tin 97 ND 10 103 54.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 105 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Silver	102.2	ND	1.0	90.5	113	<u>38.96</u>	<u>146.8</u>	
Tin 97 ND 10 103 34.2 49.03 151.5 Vanadium 89.0 ND 1.0 84.8 125 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Sodium	4484	ND	20	4080		<u>51.96</u>	146.1	
Vanadium 89.0 ND 1.0 84.8 105 68.04 135.6 Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 50.44 139.6	Thallium	103	ND	20	91	::3	49.01	153.4	
Zinc 92.9 ND 2.0 98.6 34.2 57.00 152.1 Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Tin	97	ND	10	103	34.2	49.03	<u>151.5</u>	
Titanium 182.0 ND 5.0 182.0 100 60.44 139.6	Vanadium	89.0	ND	1.0	84.8	105	68.04	<u>135.6</u>	
	Zinc	92.9	ND	2.0	98.6	34.2	57.00	152.1	
<u>Zirconium</u> 100.7 ND 2.0 83.4 121 * 82.97 117.0	Titanium	182.0	ND	5.0	182.0	100	60.44	139.6	
	Zirconium	100.7	ND	2.0	83.4	121 *	<u>82.97</u>	117.0	

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

************************************ ICP METALS MATRIX SPIKE/MATRIX SPIKE DUPLICATE PAIRS

11/24/97 12:33:58

QA/QC Summary Report

Work Order: 9711132 Client: ENTACT

SPIKE

Test Class/ Matrix/ Ref Spk Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 4 132-01B-S ICP_S K M S 3 1.0 1.01 1.0 1 CSM

		Unspiked	Detection	Spike	Rec-	Sp	ecs			
Analytes	Result	Result	Limit	Value	overy	Low	High			
Aluminum	12638	8484	<u> </u>	4950	83.9	75	125	 	. <u>—</u> —	 _
Antimony	91	ND	10	198	46.0 *	<u></u>	125	 		_
Arsenic	175	17	10	198	79.3	75	125	 		
Barium	213.40	32.38	0.40	198.02	91.4	75	125	 		_
Beryllium	161.15	0.44	0.20	198.02	81.2	75	125	 		_
Boron	154.7	ND	5.0	198.0	73.1	75	125	 		 _
Cadmium	151.96	1.42	0.50	198.02	75.3	75	125	 		_
Calcium	29145	22386	20	4950	137 •	75	125	 		_
Chromium	166.4	10.7	1.0	198.0	78.6	75	125	 		_
Cobalt	161.7	8.9	1.0	198.0	77.2	75	125	 		_
Copper	191.3	14.0	2.0	198.0	89.5	75	125	 		 _
Iron	29219	21078	10	3960	206 *	75	125	 		 _
Lead	167.9	12.7	5.0	198.0	78.4	75	125	 		_
Lithium	214.1	23.5	2.3	198.0	95.3	75	125	 		
Magnesium	11786	7480	10	3960	139	75	125	 		_
Manganese	484.98	256.42	0.50	198.02	115	75	125	 		
Molybdenum	157.0	1.7	1.0	198.0	78.4	75	125	 		_
Nickel	172.9	21.9	2.0	198.0	75.3	75	125			_
Potassium	4873	1574	20	3960	83.3	75	125	 		_
Selenium	164	ND	10	198	82.8	75	125	 		 _
Silicon	324	225	50	198	50.0 *	75	125	 ·	_	_
Strontium	209.2	30.3	1.0	198.0	90.4	75	125	 		_
Silver	164.5	ND	1.0	198.0	93.1	75	125	 		 _
Sodium	4745	91	20	4950	94.0	75	125	 		 _
Thallium	175	ND	20	198	38.4	75	125	 		 _
Tin	136	ND	10	198	68.7 *	75	125			_
Vanadium	176.5	12.4	1.0	198.0	82.9	75	125			 _
Zinc	213.2	156.6	2.0	198.0	28.6 •	75	125			 _
Titanium	210.5	70.4	5.0	198.0	70.8 *	75	125			 _
Zirconium	173.4	12.2	2.0	198.0	81.4	75	125			 _

Page 3

Page 4

Conv.

11/24/97 12:33:58

QA/QC Summary Report

Work Order: 9711132 Client: ENTACT

SPIKE DUPLICATE

Test Class/ Matrix/ Ref Spk

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 5 132-01B-SD ICP_S K M D S 3 4 1.0 1.05 1.01 CSM

		Unspiked	Detection	Spike	Rec-	Sp	ecs	RPD S	Specs	Referenc	ce	
Analytes	Result	Result	Limit	Value	overy	Low	High	Low	High	Recovery	/ RPD	v
Aluminum	12349	8484	10	4762	81.2	75	125		20	83.9	3.27	<u>Y</u>
Antimony	106	ND	10	190	55.8 *	75	125		20	46.0 *	19.3	<u>Y</u>
Arsenic	174	17	10	190	82.6	75	125		20	79.8	3.45	<u>Y</u>
Barium	211.91	32.39	0.38	192.48	94.36	75	125		20	91.4	3.12	Y
Beryllium	159.87	0.44	0.19	190.48	83.7	75	125		20	81.2	3.03	<u>Y</u>
Boron	154.8	מא	4.8	190.5	81.3	75	125		20	79.1	4.02	<u>Y</u>
Cadmium	153.20	1.42	0.48	130.48	79.7V	75	125		20	76.0	4.75	<u>Y</u>
Calcium	31250	22386	19	4762	186 *	75	125		20	137 *	30.3 *	<u>Y</u>
Chromium	166.6	10.7	1.0	190.5	81.8V	75	125		20	78.6	3.99	<u>Y</u>
Cobalt	163.8	8.9	1.0	190.5	81.3	75	125		20	77.2	5.17	<u>Y</u>
Copper	185.3	14.0	1.9	190.5	89.9	75	125		20	89.5	0.446	<u>Y</u>
Iron	23446	21078	10	3810	62.2 *	/15	125		20	206 *	107 *	Ϋ́
Lead	169.3	12.7	4.8	190.5	82.2	75	125		20	78.4	4.73	<u>Y</u>
Lithium	205.3	23.5	1.9	190.5	95.4	75	125		20	95.3	0.939	Y
Magnesium	11891	7480	<u> </u>	3810	116	75	125		20	109	6.22	<u>Y</u>
Manganese	450.48	256.42	0.48	190.48	102	75	125		20	115	12.0	<u>Y</u>
Molybdenum	158.4	1.7	1.0	190.5	82.3	75	125		20	78.4	4.85	Ā
Nickel	173.1	21.9	1.9	190.5	79.4	75	125		20	76.3	3.98	<u>Y</u>
Potassium	4594	1574	19	3810	79.3	75	125		20	83.3	4.92	<u>Y</u>
Selenium	167	ND	10	190	<u>87.9</u> (75	<u>125</u>		20	82.8	5.98	Y
Silicon	364	225	48	190	73.2 *	75	125		20	50.0 *	<u>37.7 *</u>	<u>Y</u>
Strontium	210.1	30.3	1.0	190.5	94.4	15	<u>125</u>		20	90.4	4.33	Ϋ́
Silver	163.4	ND	1.7	190.5	85.8	<u>/ 75</u>	125		20	83.1	3.20	<u>Y</u>
Sodium	4562	91	19	4762	93.9	75	125		20	94.0	0.106	Y
Thallium	170	ND	19	190	89.5	75	125		20	88.4	1.24	<u>Y</u>
Tin	143	ND	10	190	75.3	75	125		20	68.7 *	9.17	<u>Y</u>
Vanadium	175.0	12.4	1.0	190.5	<u>85.4</u>	75	125		20	82.9	2.97	Ϋ́
Zinc	212.6	156.6	1.9	190.5	29.4 *	75	125		2	28.6 *	2.76	X
Titanium	214.4	70.4	4.8	190.5	75.6	75	125		2	70.8 *	6.56	<u>Y</u>
Zirconium	167.9	12.2	1,9	190.5	<u>81.7</u>	75	125		2	81.4	0.368	<u>Y</u>

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

*************** ICP METALS POST SPIKE/POST SPIKE DUPLICATE PAIRS

11/24/97 12:33:58

QA/QC Summary Report

Work Order: 9711132 Client: ENTACT

SPIKE

Test Class/ Matrix/ Ref Spk

Conv.

Seq. Sample ID Code Sub/Dup Sub Seq Seq Dilution Weight Volume Factor Flag Ver 16 132-018-A ICP_S K P S 3 1.3 1.05 1.01 CSM

		Unspiked	Detection	Spike	Rec-	Sp	ecs			
Analytes	Result	Result	Limit	Value	overy	Low	High			
Aluminum	12981	8484	10	4762	94.4			~	 	
Antimony	181	ND	10	190	95.3				 	
Arsenic	198	17	10	190	<u>95.3</u>				 	
Barium	222.52	32.33	0.38	190.48	99.8				 	
Beryllium	182.63	0.44	0.19	190.48	95.6				 	
Boron	181.6		4.8	190.5	95.3				 	
Cadmium	178.35	1.42	0.48	190.48	92.9				 	
Calcium	28628	22385	19	4762	131				 	
Chromium	191.2	10.7	1.0	190.5	94.8				 	
Cobalt	188.5	8.9	1.0	190.5	94.3				 	
Copper	188.8	14.3	1.9	190.5	91.8				 	
Iron	25556	21078	10	3810	118				 	
Lead	190.6	12.7	4.8	190.5	93.4				 	
Lithium	203.1	23.5	1.9	190.5	94.3				 	
Magnesium	11042	7430	10	3810	93.5				 	
Manganese	446.85	256.42	0.48	130.48	100				 	
Molybdenum	181.2	1.7	1.0	190.5	94.2				 	
Nickel	202.1	21.9	1.9	190.5	94.6				 	
Potassium	5130	1574	19	3810	93.3				 	
Selenium	186	ND	10	190	97.9				 	
Silicon	373	225	48	190	77.9				 	
Strontium	213.7	30.3	1.0	190.5	96.3				 	
Silver	175.5		1.0	190.5	92.1				 	
Sodium	4589	91	19	4762	94.5				 	
Thallium	181		19	190	95.3				 	
Tin	160		10	190	84.2				 	
Vanadium	194.6	12.4	1.0	190.5	95.6				 	
Zinc	340.1	156.5	1.9	190.5	96.3				 	
Titanium	260.2	70.4	4.8	190.5	99.6				 	
Zirconium	193.1	12.2	1.9	190.5	95.0				 	

Page 8

11/24/97 12:33:58

QA/QC Summary Report

Work Order: 9711132 Client: ENTACT

SPIKE DUPLICATE

Test Class/ Matrix/ Ref Spk

Conv.

 Seq. Sample ID
 Code
 Sub/Dup
 Sub
 Seq Seq
 Dilution
 Weight
 Volume
 Factor Flag
 Ver

 17
 132-01B-AD
 ICP_S
 K P D
 S
 3
 16
 1.0
 1.05
 1.0
 1
 0
 CSM

		Unspiked	Detection	Spike	Rec-	Sp	ecs	RPD S	pecs	Reference	
Analytes	Result	Result	Limit	Value	overy	Low	High	Low	High	Recovery RPD	V
Aluminum	13099	8484	10	4762	<u>96.9</u>					94.4 2.61	Y
Antimony	179	CK	10	190	94.2					95.3 1.16	<u>Y</u>
Arsenic	198	17	<u> </u>	190	95.3					95.3 0	<u>Y</u>
Barium	222.15	32.33	0.38	190.48	99.6					99.8 0.201	X
Beryllium	180.42	0.44	0.19	190.48	94.5					95.6 1.16	<u>¥</u>
Boron	181.2	72	4.8	190.5	<u>95.1</u>					95.3 0.210	ĭ
Cadmium	176.60	1.42	0.48	190.48	92.0					92.9 0.974	¥
Calcium	28529	22385	19	4762	129					131 1.54	X.
Chromium	190.7	10.7	1.0	190.5	94.5					94.8 0.317	<u>Y</u>
Cobalt	186.9	8.9	1.0	190.5	93.4					94.3 0.959	<u>Y</u>
Copper	189.5	14.0	1.9	190.5	92.1					91.8 0.326	ĭ
Iron	25509	21073	10	3810	116					118 1.71	¥
Lead	190.0	12.7	4.8	190.5	93.1					93.4 0.322	ĭ
Lithium	205.2	23.5	1.9	190.5	95.4					94.3 1.16	ĭ
Magnesium	11141	7431		3810	96.1					93.5 2.74	<u> </u>
Manganese	445.50	256.42	0.48	190.48	99.3					100 0.702	<u>¥</u>
Molybdenum	180.1	1.7	1.0	190.5	93.6					94.2 0.639	ž
Nickel	199.9	21.9	1.9	190.5	93.4					94.6 1.28	<u>Y</u>
Potassium	5166	1574	19	3810	94.3					93.3 1.07	Y
Selenium	183	<u></u>	10	190	96.3					97.9 1.65	<u> Y</u>
Silicon	382	225	48	190	82.6					77.9 5.86	<u>Y</u>
Strontium	213.6	30.3	1.0	190.5	96.2					96.3 0.104	<u> </u>
Silver	175.2	<u></u>	1.0	190.5	92.0					92.1 0.109	Y
Sodium	4585	<u>3:</u>	19	4762	94.4					94.5 0.106	<u> </u>
Thallium	181		19	190	95.3					95.3 0	Y
Tin	159	<u></u>	10 _	190	83.7					84.2 0.596	Y
Vanadium	193.5	12.4	1.0	190.5	95.1					95.6 0.524	<u> </u>
Zinc	339.6	156.6	1.9	190.5	96.1					96.3 0.208	¥
Titanium	<u>257.7</u>	70.4	4.8	190.5	98.3					99.6 1.31	<u> Y</u>
Zirconium	190.1	12.2	1.9	190.5	93.4					95.0 1.70	<u>Y</u>

Work Order # 97-11-132 Ross Analytical Services, Inc

Reported: 11/26/97

ORGANIC BLANKS

Work Order # 97-11-132 Ross Analytical Services, Inc

Reported: 11/26/97

Sample Description HCIR blank, TRPH-3791 Test Description TRPH by EPA 418.1 Test Code HCIR

Date Run 11/21/97 Dilution Factor 1 Units mg/Kg

Compound

Result EQL

Petroleum hydrocarbons

<u><EQL</u> 30

METHOD BLANK SUMMARY

Client Sample ID....: PEST 3792
Data Type..... BLANK

Lab Sample ID.....: PEST 3792
Lab File Name....: 1971121a10.d (1), m971121a13.d (2) Date Analyzed...: 11/20/97
Concentration Level..: LOW
Method....: L8080.m

Date Extracted...: 11/20/97
Time Injected...: 20:06
Dilution Factor...: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

CLIENT SAMPLE ID	RAS: SAMPLE ID	DATE & TIME DATE & TIME ANALYZED (1) ANALYZED (2)
CS 9253	CS 9253	11/21/97 21:36 11/21/97 21:36
S BF-005	971113201C	11/22/97 01:23 11/22/97 01:23
S BF-005MS	971113201CMS	11/22/97 02:08 11/22/97 02:08
S BF-005MSD	971113201CMSD	11/22/97 02:53 11/22/97 02:53
S BF-006	971113202C	11/22/97 03:39 11/22/97 03:39

Date Printed: 11/24/97 14:48

Client Sample ID : Data Type :			
Lab Sample ID	PEST 3792 1971121a10.d (1), m971121a10.d (2)	Date Extracted: Date Analyzed:	

Concentration Level...: LOW Time Injected....: 20:06

Method.....: L8080.m Dilution Factor...: 1

Compound Sub-List...: 8081 Percent Moisture...: 0 % Undecanted

Surrogate Anal CAS Number	ytes Analyte	% Recovery	Flags	Recovery Limits Lower - Upper	医经免证证据医验证
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	108% 100%		10 - 120 10 - 140	SURROGATE SURROGATE
Target Analyte	es Analyte	Results (ug/Kg)	Flags	EQL	
11104-28-2 319-84-6 12674-11-2 11141-16-5 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1016 Aroclor-1232 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL 0.840	JF	67.0 1.70 33.0 33.0 1.70	
319-85-7 76-44-8 319-86-8 309-00-2 53469-21-9	beta-BHC Heptachlor delta-BHC Aldrin Aroclor-1242	1.80 < EQL < EQL < EQL < EQL	F	1.70 1.70 1.70 1.70 33.0	
1024-57-3 12672-29-6 5103-74-2 5103-71-9 959-98-8	Heptachlor epoxide Aroclor-1248 gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL < EQL		1.70 33.0 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4,4'-DDE Dieldrin Aroclor-1254 Endrin 4,4'-DDD	< EQL < EQL < EQL < EQL		3.30 3.30 33.0 3.30 3.30	
33213-65-9 50-29-3 8001-35-2 7421-93-4 1031-07-8	Endosulfan II 4,4'-DDT Toxaphene Endrin aldehyde Endosulfan sulfate	< EQL < EQL < EQL < EQL		3.30 3.30 67.0 3.30 3.30	
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL		33.0 17.0 3.30	

Work Order # 97-11-132 Ross Analytical Services, Inc Reported: 11/26/97

ORGANIC LABORATORY CONTROL SAMPLES

Work Order # 97-11-132 Ross Analytical Services, Inc

Reported: 11/24/97

Total Petroleum Hydrocarbons

Laboratory Control Sample, CS-9252

% Recovery = 111

ANALYTICAL RESULTS

Client Sample Data Type	ID: CS 9253 : METHSPIKE					
Lab File Name. Concentration Method Compound Sub-L	: L8080.m ist: 8081	lal2.c (2) Date Time Dilu Pero	e Analyz e Inject ution Fa	ed ctor	: 11/21/ : 21:36 : 1	/97 /97 ndecanted
Surrogate Anal		% Recovery	Flags	Recovery Lower -		
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	115% 123%		10 - 10 -		SURROGATE SURROGATE
Spike Analytes CAS Number	Analyte	% Recovery	Flags	Recovery Lower -		
58-89-9 76-44-8 309-00-2 60-57-1 72-20-8	gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin	82% 94% 94% 94% 106%		46 - 35 - 34 - 31 - 42 -	130 132 134	SPIKE SPIKE SPIKE SPIKE SPIKE
50-29-3	4.4'-DDT	94%		23 -	134	SPIKE
Target Analyte	es Analyte	Results (ug/Kg)		5	EQL	
11104-28-2 319-84-6 12674-11-2 11141-16-5 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1016 Aroclor-1232 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL 14.0)	67.0 1.70 33.0 33.0 1.70	SPIKE
319-85-7 76-44-8 319-86-8 309-00-2 53469-21-9	beta-BHC Heptachlor delta-BHC Aldrin Aroclor-1242	2.20 16.0 < EQL 16.0 < EQL	I)	1.70 1.70 1.70 1.70 33.0	SPIKE SPIKE
1024-57-3 12672-29-6 5103-74-2 5103-71-9 959-98-8	Heptachlor epoxide Aroclor-1248 gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL			1.70 33.0 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	1.60 31.0 < EQL 35.0 < EQL	} !	P	3.30 3.30 33.0 3.30 3.30	SPIKE SPIKE

Ross Analytical Services, Inc.

Date Printed: 11/24/97 14:48

ANALYTICAL RESULTS

Client Sample ID.....: CS 9253 Data Type..... METHSPIKE

Lab Sample ID....: CS 9253

Lab File Name....: 1971121a12.d (1), m971121a12.c (2) Date Analyzed...: 11/21/97

Concentration Level...: LOW

Time Injected...: 21:36

Dilution Factor...: 1

Percent Moisture...: 0 % Undecanted Compound Sub-List....: 8081

Target Analyt	t es Analyte	Results (ug/Kg) Flags	EQL
33213-65-9	Endosulfan II	< EQL	3.30
50-29-3	4,4'-DDT	31.0	3.30 SPIKE
8001-35-2	Toxaphene	< EQL	67.0
7421-93-4	Endrin aldehyde	< EQL	3.30
1031-07-8	Endosulfan sulfate	< EQL	3.30
11096-82-5	Aroclor-1260	< EQL	33.0
72-43-5	Methoxychlor	< EQL	17.0
53494-70-5	Endrin ketone	1.70	P 3.30

Date Printed: 11/24/97 14:48

Reported: II/26/97

ORGANIC MATRIX SPIKE/MATRIX SPIKE DUPLICATE PAIRS

ANALYTICAL RESULTS

Client Sample ID....: S BF-005MS Data Type..... MS

Concentration Level...: LOW Time Injected....: 02:08 Method L8080.m Dilution Factor...: 1

Compound Sub-	List: 8081	Percent Moisture: 0 % Undecan				
Surrogate Ana CAS Number	lytes Analyte	% Recovery	Flags	Recovery Lower -		2000年5月20日10日
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	115% 138%			120 140	SURROGATE SURROGATE
Spike Analyte CAS Number	s Analyte	% Recovery	Flags	Recovery Lower -		
58-89-9 76-44-8 309-00-2 60-57-1 72-20-8	gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin	82% 82% 76% 88% 97%		34 -	130 132 134	SPIKE SPIKE SPIKE SPIKE SPIKE
50-29-3	4.4'-DDT	88%		23 -	134	SPIKE
Target Analyt CAS Number	es Analyte	Results (ug/Kg)			EQL	
11104-28-2 319-84-6 12674-11-2 11141-16-5 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1016 Aroclor-1232 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL 14.0	· ·		67.0 1.70 33.0 33.0 1.70	SPIKE
319-85-7 76-44-8 319-86-8 309-00-2 53469-21-9	beta-BHC Heptachlor delta-BHC Aldrin Aroclor-1242	3.80 14.0 < EQL 13.0 < EQL) P)		1.70 1.70 1.70 1.70 33.0	SPIKE SPIKE
1024-57-3 12672-29-6 5103-74-2 5103-71-9 959-98-8	Heptachlor epoxide Aroclor-1248 gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL	• •		1.70 33.0 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	< EQL 29.0 < EQL 32.0 < EQL) -)		3.30 3.30 33.0 3.30 3.30	SPIKE SPIKE

Ross Analytical Services, Inc.

Date Printed: 11/24/97 14:48

00002'

ANALYTICAL RESULTS

Client Sample ID.....: S BF-005MS

Data Type..... MS

Concentration Level...: LOW Time Injected....: 02:08 Dilution Factor...: 1

Method..... L8080.m

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

Target Analy	tes Analyte	Results (ug/Kg)	Flags	EQL	E = = = =
33213-65-9 50-29-3 7421-93-4 8001-35-2 1031-07-8	Endosulfan II 4.4'-DDT Endrin aldehyde Toxaphene Endosulfan sulfate	< EQL 29.0 0.920 < EQL < EQL	Р	3.30 3.30 SPI 3.30 67.0 3.30	KE
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL		33.0 17.0 3.30	

Date Printed: 11/24/97 14:48

Client Sample ID..... S BF-005MSD

Data Type..... MSD

Method..... L8080.m

Dilution Factor...: 1 Percent Moisture...: 0 % Undecanted Compound Sub-List....: 8081

Compound Sub E	730	1 61 0	20110 1101	30 0 1 C	. 0 % 01	idecarreed
Surrogate Analy	ytes Analyte	% Recovery	Flags	Recovery Lower -		## ## ################################
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	85% 100%		10 - 10 -		SURROGATE SURROGATE
Spike Analytes CAS Number	Analyte	% Recovery	Flags	Recovery Lower -		
58-89-9 76-44-8 309-00-2 60-57-1 72-20-8	gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin	82% 76% 88% 85% 94%		46 - 35 - 34 - 31 - 42 -	130 132 134 139	SPIKE SPIKE SPIKE SPIKE SPIKE
50-29-3	4,4'-DDT	88%		23 -	134	SPIKE
Target Analyte CAS Number	s Analyte	Results (ug/Kg)	Flags	5	EQL	
11104-28-2 319-84-6 12674-11-2 11141-16-5 58-89-9	Aroclor-1221 alpha-BHC Aroclor-1016 Aroclor-1232 gamma-BHC (Lindane)	< EQL < EQL < EQL < EQL 14.0			66.0 1.70 33.0 33.0 1.70	SPIKE
319-85-7 76-44-8 319-86-8 309-00-2 53469-21-9	beta-BHC Heptachlor delta-BHC Aldrin Aroclor-1242	4.80 13.0 < EQL 15.0 < EQL	. !))	1.70 1.70 1.70 1.70 33.0	SPIKE SPIKE
1024-57-3 12672-29-6 5103-74-2 5103-71-9 959-98-8	Heptachlor epoxide Aroclor-1248 gamma-Chlordane alpha-Chlordane Endosulfan I	< EQL < EQL < EQL < EQL < EQL			1.70 33.0 1.70 1.70 1.70	
72-55-9 60-57-1 11097-69-1 72-20-8 72-54-8	4.4'-DDE Dieldrin Aroclor-1254 Endrin 4.4'-DDD	< EQL 28.0 < EQL 31.0 < EQL)	D	3.30 3.30 33.0 3.30 3.30	SPIKE SPIKE

ANALYTICAL RESULTS

Client Sample ID.....: S BF-005MSD

Data Type MSD

Method..... L8080.m Dilution Factor....: 1

Compound Sub-List....: 8081 Percent Moisture...: 0 % Undecanted

Target Analy CAS Number	tes Analyte	Results (ug/Kg)	Flags	EQL	· 医多色生素素 医多皮疹
33213-65-9 50-29-3 7421-93-4 8001-35-2 1031-07-8	Endosulfan II 4.4'-DDT Endrin aldehyde Toxaphene Endosulfan sulfate	< EQL 29.0 < EQL < EQL < EQL	Р	3.30 3.30 3.30 66.0 3.30	SPIKE
11096-82-5 72-43-5 53494-70-5	Aroclor-1260 Methoxychlor Endrin ketone	< EQL < EQL < EQL		33.0 17.0 3.30	

Mercury

Method: SW846 7471

Detection

 Same
 Sample Description
 Result
 Units
 Limit
 Analyzed
 Bv

 03A
 971113201/CBL2B Bin 1
 < 0.05</td>
 mg/Kg
 0.05
 11/25/97 JSC

(BF-005)

Page 5

000033

Mercury

Method: SW846 7471

Detection

Samp Sample Description
04A 971113202/CBL2B Bin 1

<u>Result</u> < 0.05

Units Limit mg/Kg 0.05

Analyzed By 11/25/97 JSC

(BF-006)

		•	CHAIN OF USTODY 97-11-132)
•			Sampler: Bank(Job #: C/7	6
			ENTACT Contact: SALU(Date: 11/14	107
ENTACT	Wood Dale, I	d Dale Rd. Suite / Ilinois 60191 2100 Fax 630/6	Turnaround Time Requested	
Sample No.	Matrix	Composite or Grab	Description/Remarks Preservative	Analysis
BF -005	soil	qyab	4- 407 years built 11 course camples 4-c	AB CT
BF- PM	sail	grab	4-402 y 1811 4°C	ABCT
:			* please hold camples untile 27-001 d	
		;	77-004 bave been analyzed and	
			it has been determined that tray	
			Will 107 2011	
			(216) 687-0461	
			Que 1/6/197 M JS	
Samples Relinquished	d Bv:	heepe	ANALYSIS	
Samples Received By		W.	pate A= Total RIRA Netall F=	
	_	114	Date B= testicites G=	
Samples Relinquished	d By:		C= total potroleum hudrocarbons H=	

Date

Condition of Sample Upon Receipt:

Samples Received By:

Samples Relinquished By:

Bottles Intact? Yes / No Volatiles Free on Headspace? Yes / No COC Seals Present and Intact? Yes

Distribution:

Original - To Customer w/ Final Report 2nd Copy - To Job File 3rd Copy - To Lab

ROSS ANALYTICAL SERVICES, INC.

SAMPLE RECEIPT REPORT

	WORKORDER #
	RECEIVED BY: DATE/TIME:///19/97 /130 LOGIN DATE: ///20/9
	SAMPLES ARRIVED BY(Circle One) Fed-Ex UPS Other(specify) ESK
	SHIPPING DOCUMENTATION PRESENT? YES NO TRACKING NUMBER
~	SHIPPING CONTAINER INTACT? YES/NO (If no, explain below)
	CUSTODY SEALS PRESENT? CUSTODY SEALS INTACT? Where? Cooler Bottles Seal Nos.
	SAMPLE TEMPERATURE
	AQUEOUS SAMPLES FOR METALS, pH < 2? YES/NO/NA
	AQUEOUS SAMPLES FOR WET TESTS, pH < 2? YES/NO/NA
	AQUEOUS SAMPLES FOR CYANIDE, pH > 12? YES/NO/NA
	AQUEOUS SAMPLES FOR VOA'S PRESERVED WITH HCI? YES/NO (NA (From COC, Do 1004 take pH)
	OTHER PRESERVATION REQUIREMENTS MET? YES/NO/NA SPECIFY:
	SAMPLES INTACT? YES/NO/NA (If no, explain below)
	SHIPPING CONTAINER: (Circle) Ross Client Date Returned
	COMMENTS:

Appendix H

Correspondence

October 15, 1997

Mr. Thomas Alcamo U.S. EPA Region 5 77 W. Jackson Blvd. SR-6J Chicago, IL 60604-3590

RE: Plan of Remedial Activities for Holmden Avenue Property

Dear Mr. Alcamo:

This document contains plans for the removal activities of contaminated soils for property located on Holmden Avenue in Cleveland, Ohio. This document is written in conjunction with information generated by ENTACT in the *Master Metals - Holmden Avenue Site* packet dated April 10, 1997.

Remediation activities are scheduled to begin approximately October 20th, 1997. ENTACT crew members, upon finishing final activities at the Master Metal site, will be re-deployed to complete the remediation of this property.

The following is a summary of work items that will be initiated to complete the clean-up of this property.

Mobilization/Site Preparation

The project will commence with the deployment of OSHA 40 Hour Hazardous Materials trained technicians. These technicians will be coming directly from the Master Metals Facility. This crew is extremely familiar with the area and with this type of remediation work.

Mobilization to the Holmden Avenue Property site will consist of moving minimal personnel and equipment. Equipment already in place at the Master Metals facility will be utilized as much as possible. The office trailer that was used during emergency removal actions will be continued to be used due to its close proximity and prior hook-up of electricity, phones, and restroom facilities. This will enable a continued strong support base for administrative office tasks.

Site preparation tasks will involve notifying home owners adjacent to the site of upcoming work activities that will be performed. These homeowners will also be told of any potential safety and

health issues regarding the site. Prior to any digging, a utility locator will be notified to check the area for buried hazards. Equipment operators will be informed of any buried hazards as well as reminded of any overhead hazards. Project specific safety measures will be reviewed, instituted, and enforced. A grid layout system will be completed on contaminated areas to determine exact areas of excavation.

Equipment will most likely consist of a long stick excavator, a wheel loader, and engineering controls such a pressure washers for dust suppression. Additional equipment will include an XRF instrument, sampling equipment, and decontamination equipment.

Work zones will be established and enforced near the work area. The safe zone will be designated as the area away from the primary contamination and operations. This will most likely be located at the front of the property nearest Holmden Avenue. An exclusion zone will be established in the area surrounding the actual excavation operations. Decontamination zones will be established to facilitate decontamination of personnel and equipment.

Air Sampling

Air monitoring will be performed on site to ensure that all personnel and surrounding homes are not exposed to airborne contamination through airborne emissions. Air quality samples will be collected with low volume samplers in potential generation areas. Potential generation areas will consist of the excavation area, and any other contaminated material handling area. Low volume air monitors will be positioned upwind, downwind and inside of these areas. If possible and applicable, the weather station used during the Master Metals clean-up may be used if deemed necessary by on-site project management.

Field Activities

Field activities will commence the week of October 20th and will last approximately 2 weeks. Notification of work activities to home owners, grid layout, and site preparation and mobilization will be first. Excavation activities will begin immediately afterward. Areas exhibiting lead concentrations of over 400 ppm will be excavated. Utilizing a long stick excavator, areas that are down slope will be dug from either the top or the bottom of the property slope. A wheel loader or excavator may be used to scrape the top six inches of material from level portions of the site. An XRF device will be utilized to guide excavation activities thus minimizing the amount of soil required to be excavated.

The excavated material will be loaded directly into dump trucks and brought to the Master Metals facility. It will be placed in the on-site storage tank that was constructed during the emergency removal action. Temporary stockpiling of the material in this location will allow for adequate characterization while minimizing human exposure which may occur if the material is stockpiled at Holmden Avenue.

Verification Sampling

Once XRF analyses indicate the removal criteria has been met, verification samples will be collected. Excavation will be verified using confirmation sampling. One laboratory verification grab sample will be collected from each grid. In the case of slopes, the established grid will be extended down the slope and one sample location will be collected at each extended grid slope location. The samples will be collected, handled and analyzed at the laboratory with proper quality assurance/quality control procedures. The confirmation sampling will be utilized to verify clean-up criteria has been met.

Site Restoration

Following confirmation of clean-up levels, excavation area restoration will begin. In order to minimize open excavation areas, ENTACT will begin the restoration process as soon as possible after gaining laboratory verification sample results indicating the cleanup objective of 400 ppm has been obtained.

Backfill material will be obtained from an off-site source. Samples will be obtained from the backfill source to ensure that the material is indeed clean. This material will then be placed in the excavated areas. The areas will be returned to drainage grade and re-seeded.

Demobilization

With the verified completion of all work items, demobilization activities will begin. All equipment and supplies brought to the site will be removed.

As stated earlier, work activities for this scope are scheduled to be completed within a two week time period. This can vary depending on turn around times of laboratory samples and/or inclement weather.

Should you have any questions regarding the above, please contact me at (630) 616-2100.

Respectfully submitted,

Dean Pisani

ENTACT

Michael De

ENTACT

Robert S. Santoro

ENTACT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

REPLY TO THE ATTENTION OF:

October 21, 1997

Mr. Michael DeRosa ENTACT 1360 N. Wood Dale Road, Suite A Wood Dale, Illinois 60191

RE: Plan of Remedial Activities for Holmden Avenue Property

Dear Mr. DeRosa.

The following is a list of my comments/concerns for the remedial activities scheduled for the Holmden Avenue Property:

- Can Entact provide a project schedule that will detail the phases of work to be performed over the two-week period?
- 2. Can Entact provide a workplan that will include more specific information on the verification sampling such as the type of lab that will be used, type of XRF instrument and sampling equipment. (E.P.A. does not have standard operating procedures for the use of this piece of equipment), and information on the grid system of sampling (cell size, etc.).
- 3. Please include a Health and Safety Plan and provide a QAPP Amendment with respect to the additional work being done at the Holmden Property.
- 4. Can Entact provide more information on the air sampling such as locations of air monitors with respect to the site? Please represent them on a map.

If you have any questions general or specific, please fell free to contact me at (312) 353-9228.

Ababi Harris

U.S.E.P.A.

Sincerely.

October 27, 1997

Ababi Harris U.S. EPA Region 5 77 W. Jackson Blvd, SR-6J Chicago, Illinois 60604

RE: Plan of Remedial Activities for Holmden Avenue Property

Dear Mr. Harris:

This correspondence is in response to your letter dated October 21, 1997 and contains ENTACT's responses to U.S. EPA comments as outlined below:

1. U.S. EPA Comment: Can ENTACT provide a project schedule that will detail the phases of work to be performed over the two-week period?

Response: It is anticipated that site activities will commence the week of October, 27, 1997 and last three weeks. Based on this start date, excavation activities will take approximately one to two weeks. Laboratory verification will be conducted from week one through week two. Restoration activities will begin during weeks two and three.

2. Can ENTACT provide a workplan that will include more specific information on the verification sampling such as the type of lab that will be used, type of XRF instrument and sampling equipment (F.P.A. does not have standard operating procedures for the use of this piece of equipment), and information on the grid system of sampling (cell size, etc.).

Response:

The laboratory to be used for the Holmden property excavation will be NET Laboratories, Bartlett, Illinois. The operation of the XRF will be based on the ENTACT SOP for operation of the Spectrace 9000 XRF which is included in the Engineering Evaluation / Cost Analysis (EE/CA) Support Sampling Plan. It should be noted that the XRF will be used for excavation guidance only. The grid verification samples (one per grid) will be sent to NET Laboratories.

Due to the irregular shape of the Holmden property, exact dimensions of each grid cannot be

specified. However, the attached map shows approximate sizes of each grid. No grid will be larger than 50 feet by 50 feet.

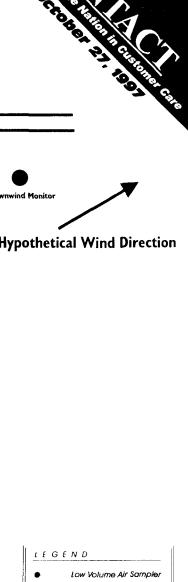
3. Please include a Health and Safety Plan and provide a QAPP amendment with respect to the work being done at the Holmden Property.

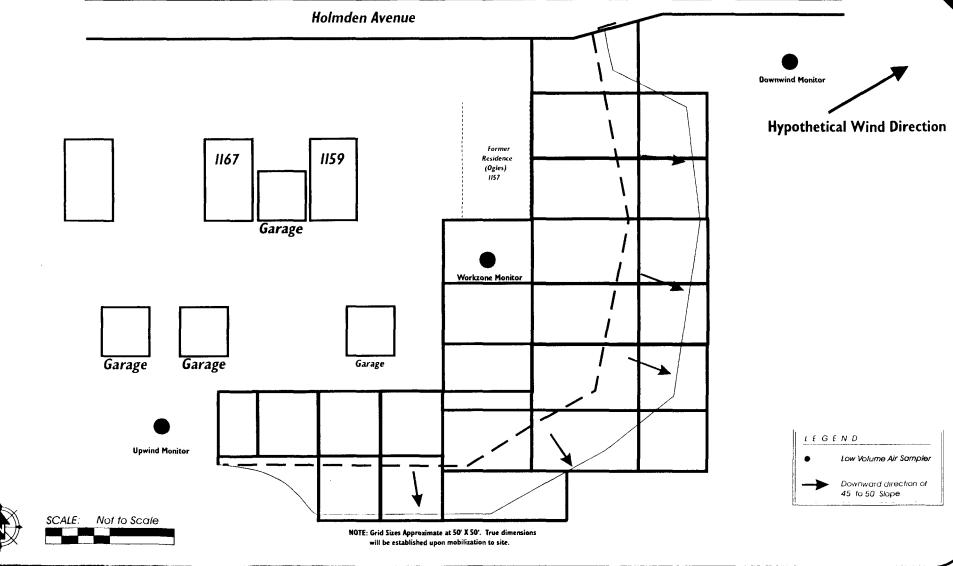
Response: The quality assurance/quality control procedures will be conducted in accordance with those procedures specified in the Phase I Time-critical Removal Workplan for the Master Metals Site. In addition, ENTACT will initiate health and safety procedures outlined in the Health and Safety plan for the Phase I Time-critical Removal workplan.

4. Can ENTACT provide more information on the air sampling such as location of air monitors with respect to the site? Please represent them on a map.

Response: The air monitor locations are shown on the attached map. It should be noted that the location of the low volume personal pumps is approximate. However, one pump will be situated downwind, one pump will be located upwind, and a third monitor will be located on excavation personnel.

If you have any questions regarding these responses, please contact me at (630) 616-2100.


Respectfully,


Michael DeRosa ENTACT, Inc.

Public Alloso

Holmden Avenue Site Cleveland, Ohio

Approximate Grid System

November 5, 1997

Mr. Ababi Harris U. S. EPA Region 5 77 W. Jackson Blvd, SR-6J Chicago, Illinois 60604

Re:

Plan for Remedial Activities at the Holmden Avenue Property

Cleveland, Ohio

Dear Mr. Harris:

It was a pleasure meeting you. As follow-up to our meeting on November 4, 1997, we would like to document the agreement that was reached with yourself and Ohio EPA representatives Bart Ray and Sheila Abraham, as to the remedial activities to be performed at the Holmden Avenue property in Cleveland, Ohio.

It was determined that all material greater then 400 parts per million total lead will be excavated from areas that are safely accessible. This includes areas down the southern slope. Areas that are not accessible to humans or equipment and/or have been covered with cement debris deposited by the City of Cleveland will not be excavated. Samples will be collected from these areas to document lead levels. The property at the immediate bottom of the slope includes a railway and is a heavily industrialized area being utilized as storage space for LTV Steel.

Also, preliminary XRF samples indicated that lead levels greater then 400 ppm does not exist in the areas that are unaccessible.

Michael De Z Mike DeRosa

Please let us know immediately if our understanding of activities to be performed is not in accordance with yours. We can be contacted at (630) 616-2100.

Respectfully submitted,

Dean C. Pisani

ENTACT

CC:

Bart Ray, Ohio EPA

Sheila Abraham, Ph.D., Ohio EPA

Tom Alcamo, U. S. EPA

Master Metals Technical Committee

Appendix I

Site Access Agreement

ACCESS AGREEMENT TO CONDUCT REMOVAL ACTIVITIES

The undersigned is the owner of property located at
, and hereby grants to the
Respondents in the United States Environmental Protection Agency ("EPA")
Administrative Consent Order for the Master Metals Site ("Order"), their agents
and contractors including ENTACT, and authorized governmental
representatives access to my property to perform all work required by EPA in the
Order. The right of access granted by this Agreement will begin on April 9, 1997,
and will last until the EPA notifies Respondents that the activities required by the
Order have been properly completed.
By: C-VC C-LE (signature)
(printed name)
Date: <u>4/9/97</u>
Witness:
Cherry

(signature)

(printed name)

Appendix J

Material Tickets

(B) Kurtz Bros., Inc.

Corporate Office, Cleveland

P.O. Box 31179 • Independence OH 44131

\Box	F		W	F	R	Т	0:	
$\boldsymbol{\mathcal{L}}$	_	_	ıv	_		F	O .	

SALES ORDER

1 · O	uimnii	s Office

2850 Rohr Rd. • Groveport, OH 43125

LIVER TO:	• •		ercial (BILL TO:	614) 491-0868		COMPUTER ORDER NO.
ORDER DATE	CUSTOM	ER P.O. #	JOB#	РАУ	MENT TERMS	PAGE NUMBE
DATE REQ.	DATE DELIVERED		DELIVERED BY	TRUCK #	PHONE: WORK	PHONE: HOME
YDS/LBS/OTY ORDERED	YDS/LBS/OTY DELIVERED	TONS	PRODUCT /	DESCRIPTION	UNIT PRICE	TOTAL PRICE

My signature below watrants that I am authorized to accept this delivery and the terms of this waiver, on behalf of the above customer if delivery is this emade beyond the street out. Customer agrees to accept four responsibility and assume all risk for any and all damage caused to the driveway, sidewalk, house, garage, buildings, vehicles, last in surphs, utility wheat, claim, of term terms or property, read or person. I longly at the delivery is it. I have verified the amount if material agrees with the quantity ordered and the amount appearing on the stypping document. Customer agrees to accept four agrees with the quantity ordered and the amount appearing on the stypping document. Customer agrees to accept this deliver agrees from all gain to a further agrees to accept four responsibility in any unall in the customer agrees. Customer further agrees that Kurtz shall not, under any circumstances, be responsible for any indirect special or consequential duringes and nortz's liability. If any unall in except the total cost of materials delivered.

Supplier		1	/ **
Ticket #	Signature	Name Printed	Date

13

97702 14

SILVER OAK LAND DEVELOPMENT, INC.

Location: 26101 Solon Road

Dakwood Village, Ohio

MAILING: 7730 BOND STREET, SOLON, OHIO 44139

Phone: (216) 439-6700

Truck No.	Date	19
Sold To:		
TIME-IN		TIME-OUT
DESCRIPTION		
PACKER		
OPEN TOP		
S/AXLE TRUCK		
T/AXLE TRUCK		
TRI-AXLE		
TRACTOR-TRAILER		
FILL SAND		
		OUT

SILVER	OAK	LAND	DEVEL	OPMENT,	INC.
	Locat	ion: 26	101 Sold	n Road	

Oakwood Village, Ohio

MAILING: 7730 BOND STREET, SOLON, OHIO 44139

Phone: (216) 439-6700

Truck No	$\frac{3}{3} \frac{3}{3}$ Date	?	1.5	10	_ 19
Sold To:		<u>'</u> ; <u>'</u>)			
	11 -	;	1,21,1		$\hat{R}_{\mathcal{L}}$
TIME-IN				TIME-O	
DE	SCRIPTION	<u>-</u>			
PACKER		= ==			
OPEN TOP					
S/AXLE TRU	JCK .	بها سیه تد.			
T/AXLE TRU	JCK				
TRI-AXLE					
TRACTOR-1	RAILER		18	1001	
FILL SAND		K)	dis	1201	
			0	רט	-
			-		
SI	GNED	······································			

PIT COPY

181 130

SIGNED ____

Under penalty of law, I certify that, to the best of my knowledge, after appropriate inquiries of all relevant persons involved in the preparation of this report, the information submitted is true, accurate, and complete.

Shane D. Banks

Project Engineer, ENTACT Inc.

3/18/98 Date

CONFIDENTIAL INFORMATION OF ENTACT Entact uses proprietary technology in additive and treatment processing to achieve its fixation and permeability results. Patents are both issued and pending, including U.S. Patent # 5,588,947, # 5,591,116, and # 5,667,696. This document and the information contained herein is the exclusive property of ENTACT, Inc. ENTACT regards the document and the ideas contained in this document as its trade secrets. ENTACT claims copyright as an unpublished work. This document is not to be reproduced in whole or in part without the express written permission of ENTACT. The information, ideas and expressions contained in this document are not to be disclosed, copied or used in whole or in part without the express written authorization of ENTACT. Any violation will be enforced under the Texas trade secret laws and the Federal Copyright Laws. Copyright of ENTACT, Inc. 1998. All rights reserved.